Cash-back offer from May 7th to 12th, 2024: Get a flat 10% cash-back credited to your account for a minimum transaction of $50.Post Your Questions Today!

Question DetailsNormal
$ 20.00

Math m4 A1 paper

Question posted by
Online Tutor Profile
request

To study the growth of a population mathematically, we use the concept of exponential models. Generally speaking, if we want to predict the increase in the population at a certain period in time, we start by considering the current population and apply an assumed annual growth rate. For example, if the U.S. population in 2008 was 301 million and the annual growth rate was 0.9%, what would be the population in the year 2050? To solve this problem, we would use the following formula:

P(1 + r)n

In this formula, P represents the initial population we are considering, r represents the annual growth rate expressed as a decimal and n is the number of years of growth. In this example, P = 301,000,000, r = 0.9% = 0.009 (remember that you must divide by 100 to convert from a percentage to a decimal), and n = 42 (the year 2050 minus the year 2008). Plugging these into the formula, we find:

P(1 + r)n = 301,000,000(1 + 0.009)42
= 301,000,000(1.009)42
= 301,000,000(1.457)
= 438,557,000

Therefore, the U.S. population is predicted to be 438,557,000 in the year 2050.

Let’s consider the situation where we want to find out when the population will double. Let’s use this same example, but this time we want to find out when the doubling in population will occur assuming the same annual growth rate. We’ll set up the problem like the following:

Double P = P(1 + r)n
P will be 301 million, Double P will be 602 million, r = 0.009, and we will be looking for n.
Double P = P(1 + r)n
602,000,000 = 301,000,000(1 + 0.009)n

Now, we will divide both sides by 301,000,000. This will give us the following:

2 = (1.009)n

To solve for n, we need to invoke a special exponent property of logarithms. If we take the log of both sides of this equation, we can move exponent as shown below:

log 2 = log (1.009)n
log 2 = n log (1.009)

Now, divide both sides of the equation by log (1.009) to get:

n = log 2 / log (1.009)

Using the logarithm function of a calculator, this becomes:

n = log 2/log (1.009) = 77.4

Therefore, the U.S. population should double from 301 million to 602 million in 77.4 years assuming annual growth rate of 0.9 %.

Now it is your turn:
•Search the Internet and determine the most recent population of your home state (ILLINOIS). A good place to start is the U.S. Census Bureau (www.census.gov) which maintains all demographic information for the country. If possible, locate the annual growth rate for your state. If you can not locate this value, feel free to use the same value (0.9%) that we used in our example above. ◦Determine the population of your state 10 years from now.
◦Determine how long and in what year the population in your state may double assuming a steady annual growth rate.

•Look up the population of the city in which you live (NORTHBROOK, IL). If possible, find the annual percentage growth rate of your home city (use 0.9% if you can not locate this value). ◦Determine the population of your city in 10 years.
◦Determine how long until the population of your city doubles assuming a steady growth rate.

•Discuss factors that could possibly influence the growth rate of your city and state. ◦Do you live in a city or state that is experiencing growth?
◦Is it possible that you live in a city or state where the population is on the decline or hasn’t changed?
◦How would you solve this problem if the case involved a steady decline in the population (say -0.9% annually)? Show an example.

•Think of other real world applications (besides monitoring and modeling populations) where exponential equations can be utilized.

Available Answer
$ 20.00

[Solved] math m4 A1 paper

  • This solution is not purchased yet.
  • Submitted On 15 Apr, 2016 01:03:30
Answer posted by
Online Tutor Profile
solution
To study the growth of a population mathematically, we use the concept of exponential models. Generally speaking, if we want to predict the increase in the population at a certain period in time, we start by considering the current population and apply an assumed annual growth rate. For example, if the U.S. population in 2008 was 301 million and the annual growth rate was 0.9%, what would be the population in the year 2050? To solve this problem, we would use the following formula: P(1 + r)n In this formula, P represents the initial population we are considering, r represents the annual growth rate expressed as a decimal and n is the number of years of growth. In this example, P = 301,000,000, r = 0.9% = 0.009 (remember that you must divide by 100 to convert from a percentage to a decimal), and n = 42 (the year 2050 minus the year 2008). Plugging these into the formula, we find: P(1 +...
Buy now to view the complete solution
Other Similar Questions
User Profile
Acade...

math m4 A1 paper

To study the growth of a population mathematically, we use the concept of exponential models. Generally speaking, if we want to predict the increase in the population at a certain period in time, we start by considering the c...

The benefits of buying study notes from CourseMerits

homeworkhelptime
Assurance Of Timely Delivery
We value your patience, and to ensure you always receive your homework help within the promised time, our dedicated team of tutors begins their work as soon as the request arrives.
tutoring
Best Price In The Market
All the services that are available on our page cost only a nominal amount of money. In fact, the prices are lower than the industry standards. You can always expect value for money from us.
tutorsupport
Uninterrupted 24/7 Support
Our customer support wing remains online 24x7 to provide you seamless assistance. Also, when you post a query or a request here, you can expect an immediate response from our side.
closebutton

$ 629.35