
Not For Sale 19-1

USING CONTROLLED EXPERIMENTS IN BUSINESS

Can statistical principles and careful experimentation lead to improved 
products and lower costs? They certainly can, argues Rita Koselka in the 

article “The New Mantra: MVT” in Forbes magazine [Roselka (1996)]. Most 
products are a result of several controllable inputs.  The question is, Which 
combination of input settings results in the best quality and lowest cost? This is 
where experimentation enters the picture. For years, companies experimented 
(if they experimented at all) by changing the level of one input at a time. 
This one-at-a-time method of experimentation is not only costly and time-
consuming, but it often fails to identify the best combination of input settings. 
As we will discuss in Section 19-5, the input factors often interact, so that the 
best setting of one factor might depend on the settings of other factors, and 
one-at-a-time testing will probably not discover this fact.  A better alternative is 
to test multiple factors simultaneously.  This is called multiple variable testing, 
or MVT, and it is quickly becoming regarded as one of the most important 
statistical techniques for product improvement. If you have never heard of MVT, 
you probably will. It is a natural outgrowth of the quality control movement that 
has been so pervasive in the past two decades.  As the article states, “It [MVT] 
doesn’t just tell you how to raise the quality of your output. It tells you how to 
do that cost-effectively.”

The potential improvements with MVT can occur in traditional 
manufacturing and service industries. The following are several examples 
discussed in the article.

 ■ Several years ago a subsidiary of Raychem Corp. called Elo TouchSystems 
was losing $3 million annually making touch-sensitive computer screens 
for products like automatic teller machines. The problem was a bubbling 
between the screen and the coating, and it resulted in a disastrous
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 25% reject rate. Raychem had spent 18 months on quality improvement efforts, 
but they hadn’t worked. Then the company hired statistical consultants who 
experimented with MVT.  Their solution, which would never have surfaced with 
one-at-a-time testing, was to change three things at the same time: the type of 
polyester, the coversheet shaping process, and the adhesive.  Within months, the 
reject rate had decreased to less than 1%, many fewer quality inspectors were 
required, and the company was breaking even.  After the changes, it began making  
$15 million on $50 million in sales.

 ■ For years, Boise Cascade had been experimenting, with limited success, with small 
variations in its pulping process at a Louisiana paper mill.  After using MVT with  
eight variables, it came to the counterintuitive conclusion that the mill could 
maintain its paper quality while switching to a cheaper grade of wood.  The result 
was paper of at least as high a quality level and a savings of $3 million per year.

 ■ Saint Luke’s Hospital in Kansas City was concerned about the misuse of warfarin, 
an anti-bloodclotting drug that can be fatal if used improperly. In 1992 the hospital 
worked with statistical consultants to experiment with ways to keep patients 
from misusing the drug.  They tested seven variables to better educate patients 
and provide emergency access to nurses.  They found that having a standardized 
instruction sheet and having the pharmacist discuss the drug with patients  
yielded a 68% improvement in patient understanding of how to use the drug 
appropriately.

 ■ A shoe company selling sneakers in over 100 stores was considering a proposal 
to increase sales with a costly, high-tech display. Before doing so, it hired statistical 
consultants, who persuaded the company to experiment with a whole range of 
possible changes: in sales techniques, advertising, separation of shoes by color, and 
various discounts, as well as the displays.  The findings were surprising.  Although the 
new display had the potential to increase sales, its impact would not be nearly as 
great as a simple combination of using the old display case and arranging the shoes 
by color. Using this suggestion, the company did not spend money on new displays, 
and it was still able to increase sales by 33%.

MVT is not a new scientific method. Statisticians have studied and applied 
experimental designs for years, particularly in the physical sciences. However, it is 
relatively new to business. For the most part, the well-known strategic consultants and 
the big accounting firms have been strangers to MVT. Fortunately, this is changing. For 
example, experimental design is now being taught formally at Motorola University in 
Illinois.  As Roselka concludes, “The design of experiments involves some cleverness.  
It may cost a lot of money to shut down a production line and rearrange it; it may take 
precious months for a billing department or a mail-order operation to see whether a 
novel way of doing things will pay off. MVT is the science of gleaning the most amount of 
information from the least amount of costly testing.” ■

19-1 INTRODUCTION
One of the most frequent applications of statistics is the comparison of several populations 
on some characteristic. We discussed the simplest version of this comparison problem in 
Chapters 8 and 9 when we discussed the two-sample procedure for analyzing the difference 
between two population means. A natural extension is to more than two population means, 
which is the topic of this chapter. The resulting procedure is commonly called analysis of 
variance, or ANOVA.
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Not For Sale19-1 Introduction 19-3

There are two typical situations where ANOVA is used. The first is when there are 
several distinct populations. For example, consider recent graduates with BS degrees in one 
of three disciplines: Business, Engineering, and Computer Science. We might sample ran-
domly from each of these populations to discover whether there are any significant differ-
ences among them with respect to mean starting salary. A second situation where ANOVA 
is used is in randomized experiments. In this case a single population is treated in one of 
several ways. For example, a pharmaceutical company might select a group of people who 
suffer from allergies and randomly assign each person to a different type of allergy medi-
cine currently being developed. Then the question is whether any of the treatments differ 
from one another with respect to the mean amount of symptom relief.

These two examples illustrate two basic situations where ANOVA is used. The com-
parison of recent graduates is called an observational study. In this case we analyze the 
data that are already available to us, that is, the starting salaries of recent graduates from the 
three disciplines. Unfortunately we don’t first get to choose which students should major 
in which disciplines. It might be nice to do so because it would help to rule out other pos-
sible causes besides discipline, such as unequal academic abilities, that might affect start-
ing salaries. But we don’t get to make these choices. The students themselves choose their 
disciplines, and all we can do is analyze the resulting data on starting salaries.

In an observational study, we analyze data already available to us. The disadvantage 
is that it is difficult or impossible to rule out factors over which we have no control for 
the effects we observe.

In contrast, the allergy example illustrates a designed experiment. The researchers in 
this example are interested in whether different allergy medicines cause different amounts 
of symptom relief. Therefore, they will select the subjects for the experiment so that the 
subjects receiving one allergy medicine are as much alike, in every characteristic that might 
matter—age, medical history, gender mix, and so on—as the subjects receiving any other 
allergy medicine. In this way, if there are any differences across groups with respect to 
symptom relief, the researchers will be able to attribute the differences to the types of 
medicine, not some extraneous factor.

In a designed experiment, we control for various factors such as age, gender, or 
socioeconomic status so that we can learn more precisely what is responsible for the 
effects we observe.

It should be clear from this discussion that designed experiments are generally prefer-
able to observational studies. In a carefully designed experiment, where we can “control 
for” extraneous factors such as age or gender that are not of direct interest, we can be fairly 
sure that any differences across groups with respect to some measurement variable are due 
to the variables that we purposely manipulate. This ability to infer causal relationships is 
never possible with observational studies. For example, if recent Business graduates are 
found to make more, on average, than Computer Science graduates, we can never be sure 
whether this is a result of being a Business graduate rather than a Computer Science gradu-
ate or whether, say, it is due to the fact that the Business graduates in our study have more 
work experience than the Computer Science graduates. We didn’t control for work experi-
ence, so we cannot rule out the possibility that it might have had an effect.

ANOVA has been used in many disciplines. In fact, it began in agricultural studies, 
where researchers wanted to learn, for example, which types of wheat produce the great-
est yield per acre. Because the results from such an experiment can take many months to 
obtain, the agricultural researchers had to design their experiments very carefully, so that 
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they could obtain the most information from the resulting data. This idea of obtaining the 
most useful information from a limited amount of data continues to be crucial in ANOVA 
studies and has spawned a whole area of scientific research called experimental design. 
The essential goal of experimental design is to decide which observations to make, given 
a limited budget (in time and/or money), to maximize the chances of seeing differences 
across groups that actually exist. For example, the allergy researchers want to design their 
experiment so that if there really are differences across medicine types, the analysis will 
have a good chance of detecting them.

Experimental design is the science (and art) of setting up an experiment so that the 
most information can be obtained for the time and money involved.

We will concentrate on the most common and basic experimental designs in this 
chapter, leaving more complex designs to specialized books. However, because our audi-
ence is mostly business students, it is important to note that the use of designed experi-
ments in business situations is probably less prevalent than in, say, medicine or agriculture. 
Business managers do not always have the luxury of being able to design a controlled 
experiment for obtaining data. Instead, they often have to rely on whatever data are avail-
able, that is, observational data. Nevertheless, as the introductory vignette to this chapter 
attests, there are many potentially profitable uses of experimental design in the business 
world, and many companies are beginning to use designed experiments for competitive 
advantage.

Before proceeding, there is some general terminology we should introduce. In all of 
our examples, there is a variable of primary interest that we wish to measure. It is called 
the dependent variable (or sometimes the response or criterion variable) and is the 
variable we measure to detect differences among groups. The groups themselves are deter-
mined by one or more factors (sometimes called independent or explanatory variables), 
each varied at several treatment levels (often shortened to levels). The number of factors 
determines the type of ANOVA. If there is a single factor, the procedure is called one-way 
ANOVA; if there are two factors, it is called two-way ANOVA; if there are three factors, 
it is called three-way ANOVA; and so on. The only types we will discuss in this book are 
the two most common types, one-way and two-way ANOVA. It is best to think of a factor 
as a categorical variable, with the possible categories being its levels. Finally, the “entities” 
measured at each treatment level (or combination of levels) are called experimental units. 
Some examples will help to clarify this terminology.

In one-way ANOVA, a single dependent variable is measured at various levels of a 
single factor. Each experimental unit is assigned to one of these levels. In two-way 
ANOVA, a single dependent variable is measured at various combinations of the 
levels of two factors. Each experimental unit is assigned to one of these combinations 
of levels.

Consider the observational study on graduates of Business, Engineering, and Computer 
Science. The dependent variable is starting salary, the experimental units are the  individual 
graduates, and the single factor is the student’s major discipline. This factor has three 
 levels: Business, Engineering, and Computer Science, and each student is “assigned” to 
one of these levels. If we also wanted to see how gender affects starting salary, we could 
introduce a second factor, gender, at the two levels “male” and “female.” Then each student 
would be “assigned” to one of the combinations of levels, such as a female in Business.

For the study on allergy medicines, the dependent variable is the amount of relief from 
allergy symptoms, the experimental units are the individual patients, and the single factor 

It is no coincidence 
that some of this 
terminology is the 
same as that used in 
regression analysis. 
We will see why later 
in this chapter, when 
we investigate the 
relationship between 
ANOVA and regression.
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Not For Sale19-2 One-Way ANOVA 19-5

is medicine type. Its levels are the various types of medicines used in the experiment. Each 
patient in the experiment receives exactly one of these types of medicine. We could also 
introduce a second factor here. For example, if we purposely wanted to see whether age 
has an effect on the dependent variable (or on which medicine type is most effective), we 
could introduce a second factor, age, with levels such as 5 to 20,  20 to 35,  35 to 50, and 
50 or older. Then each patient would be at some combination of the two factors, such as a 
person 20 to 35 years old receiving the second type of medicine.

Although the experimental units in both of these two examples are people, this is not 
always the case. Suppose a company wants to see whether five different shelf layouts for its 
product lead to different levels of sales. The company could choose a sample of 50 super-
markets that sell its product, try the first layout in 10 of them, the second layout in another 
10, and so on. Then the dependent variable is sales level, the single factor is shelf layout, 
varied at five levels, and the experimental units are the 50 supermarkets. Note that in this 
example, each of the experimental units, that is, each supermarket, is chosen (probably in 
some random way) to “receive” one of the five treatments and each treatment is applied to a 
separate subset of 10 supermarkets. When there are an equal number of experimental units 
assigned to each treatment level (or combination of levels, for a two-factor or multi-factor 
design), this is called a balanced design. Balanced designs are somewhat easier to analyze, 
and we prefer them whenever possible. In fact, the only two-factor design we will discuss 
in this book is a balanced design.

In a balanced design, an equal number of experimental units is assigned to each 
combination of treatment levels.

19-2 ONE-WAY ANOVA
We begin our discussion with the simplest design to analyze, the one-factor design. As 
discussed in the introduction, there are basically two situations. First, the data could be 
observational data, in which case the levels of the single factor might best be considered 
as “subpopulations” of an overall population—graduates of Business, Engineering, and 
Computer Science, for example. Second, the data could be generated from a designed 
experiment, where a single population of experimental units, allergy patients, say, is treated 
by different types of allergy medicine. Fortunately, the data analysis is basically the same 
in either case. We normally ask two questions. First, are there any significant differences 
in the mean of the dependent variable across the different groups? If the answer to this 
question is “yes,” then we typically ask the second question: Which of the groups differs 
significantly from which others, again with respect to the mean of the dependent variable?

19-2a The Equal-Means Test
We set up the first question as a hypothesis test. Let J be the number of levels of the single 
factor, and let μj be the mean of the dependent variable for level j. (As usual, this Greek 
letter is used as a “population” mean, the mean of the dependent variable if all experimen-
tal units received treatment level j.) The null hypothesis is that there are no differences in 
population means across treatment levels:

H0:  μ1 = μ2 = . . . = μJ

The alternative is then the opposite, namely, that at least one pair of μ’s are not equal. If 
we can reject this null hypothesis at some typical level of significance (usually the 5% or 
10% level), then we hunt further to see which means are different from which others. To do 
this, we typically calculate confidence intervals for differences between pairs of means and 
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see which of these confidence intervals do not include zero. For example, if the confidence 
interval for the difference μ2 − μ4 extends from 5.35 to 9.31, we would conclude that μ2 
and μ4 are not equal (and that μ2 is in fact larger than μ4).

This is the general plan. Now we will see how to put it into action. First, we ask an 
obvious question: If ANOVA is basically a test of differences between means, why is it 
called analysis of variance and not analysis of means? The answer to this question is the 
key to the procedure. Consider the box plot in Figure 19.1. It corresponds to observa-
tions from four treatment levels with slightly different means and fairly large variances. 
(The large variances are indicated by the relatively wide boxes and long lines extending 
from them.) From these box plots, would you conclude that the population means differ 
across the four treatment levels? Would your answer change if the data were instead as in 
Figure 19.2?1 We expect that it would.

1Note that we keep the horizontal scale the same in both charts for a fair comparison.
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Figure 19.1
Samples with Large 
Within Variation
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Figure 19.2
Samples with Small 
Within Variation
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The sample means in these two figures are virtually the same, but the variation within 
each treatment level in Figure 19.1 is quite large relative to the variation between the sample 
means. In contrast, there is very little variation within each treatment level in Figure 19.2. 
In the first case, the large “within” variation makes it difficult to infer whether there are 
really any differences across population means, whereas the small “within” variation in 
the second case makes it clearer that differences across population means probably exist.

This is the essence of the ANOVA procedure. We compare variation within the indi-
vidual treatment levels to variation between the sample means. Only if the between varia-
tion is large relative to the within variation can we conclude with any assurance that there 
are differences across population means—and reject the equal-means hypothesis.

The test itself is based on two assumptions: (1) The population variances are all equal 
to some common variance σ2, and (2) the populations are normally distributed. These are 
analogous to the assumptions we made for the two-sample procedures in Chapters 8 and 9. 
Although these assumptions are never satisfied exactly in any real application, you should 
keep them in mind and check for gross violations whenever possible. Fortunately, the test 
we present is fairly robust to violations of these assumptions, particularly when the sample 
sizes are large and roughly the same.

To run the test, let Yj, s
2
j , and nj be the sample mean, sample variance, and sample size 

from treatment level j. Also, let n and Y  be the combined number of observations and the 
sample mean of all n observations. (Y  is called the grand mean.) Then a measure of the 
between variance is MSB (mean square between), given in Equation (19.1). Note that MSB 
is large if the individual sample means differ substantially from the grand mean Y , and this 
occurs only if they differ substantially from one another.

Remember that a 
robust test is one in 
which the conclusions 
are approximately 
valid even when the 
assumptions behind it 
are violated to some 
extent.

Measure of Between Variation

MSB =
oJ

j=1  
nj(Yj − Y  )2

J − 1
 (19.1)

Measure of Within Variation

MSW =
oJ

j=1  
(nj − 1)s2

j

n − J
 (19.2)

A measure of the within variance is MSW (mean square within), given in Equation (19.2). 
This value is really just a weighted average of the individual sample variances, where the 
sample variance s2

j  receives weight (nj − 1)/(n − J). In fact, MSW is the average of the 
sample variances if the sample sizes, the nj’s, are equal. In this sense, MSW is a pooled 
estimate of the (assumed) common variance σ2, just as in the two-sample procedures from 
Chapters 8 and 9. Therefore, MSW is large if the individual sample variances are large. For 
example, MSW is much larger in Figure 19.1 than in Figure 19.2. However, MSB is about 
the same in both figures.

The numerators of Equations (19.1) and (19.2) are called sums of squares (often 
labeled SSB and SSW), and the denominators are called degrees of freedom (often labeled 
dfB and dfW). As you will see, they are always reported in ANOVA output. Finally, the ratio 
of the mean squares is the test statistic we use, the F-ratio in Equation (19.3). Under the 
null hypothesis of equal population means, this test statistic has an F distribution with dfB 
and dfW degrees of freedom. If the null hypothesis is not true, then we would expect MSB 
to be large relative to MSW, as in Figure 19.2. Therefore, the p-value for the test is found 
by finding the probability to the right of the F-ratio in the F distribution with dfB and dfW 
degrees of freedom.
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The elements of this test are usually presented in an ANOVA table, as you will see 
shortly. The “bottom line” in this table is the p-value for the F-ratio. If the p-value is suf-
ficiently small, we can conclude that the population means are not all equal. Otherwise, we 
cannot reject the equal-means hypothesis.

19-2b Confidence Intervals for Differences between Means
If we cannot reject the equal-means hypothesis, then there is little incentive to examine 
differences between individual pairs of means. However, if we can reject the equal-means 
hypothesis, then it is customary to form confidence intervals for the differences between 
pairs of population means. This can lead to quite a few confidence intervals. For example, if 
there are J = 5 treatment levels, then there are 10 pairs of differences (the number of ways 
2 means can be chosen from a total of 5 means). The confidence interval for any difference 
μi − μj is of the form shown in Expression (19.4).

Confidence Interval for Difference Between Means

Yi − Yj ± multiplier × "MSW(1/ni + 1/nj) (19.4)

 E X A M P L E  19.1 THE EFFECT OF SHELF HEIGHT ON CEREAL SALES

Does it matter which shelf a popular brand is placed on? It certainly might, because 
we tend to purchase items that are easiest to see. To test this, suppose that Midway is 

a large chain of supermarket stores with many stores in many locations. Midway selects 
125 of these stores for an experiment. Specifically, it selects these particular 125 stores to 
be as alike as possible, so that store size, amount of customer traffic, types of customers, 
and other characteristics are as similar across stores as possible. Each store stocks cereal 
in a similar location in the store on five-shelf displays. In the experiment, 25 randomly 
selected stores place a particular popular brand of cereal—we’ll call it Brand X—on the 
lowest shelf for a month. Another randomly selected 25 stores place Brand X on the next-
to- lowest shelf, another 25 place it on the middle shelf, another 25 place it on the next-  
to-highest shelf, and the final 25 place it on the highest shelf. Then the number of boxes 
of Brand X sold is recorded at each of the stores for the last two weeks of the experi-
ment. (The first two weeks allow customers to get used to the shelving arrangement.) The 
resulting data are in the file Cereal Sales.xlsx, as shown in Figure 19.3 (with some rows 
 hidden). Does shelf height appear to make a difference in sales?

F-ratio for ANOVA Test

F-ratio = MSB
MSW

 (19.3)

As we will discuss in Section 19-4, there are several possibilities for the appropriate 
multiplier in this expression. Regardless of the multiplier, however, we are always looking 
for confidence intervals that do not include 0. If the confidence interval for μi − μj is all 
positive, for example, then we can conclude with high confidence that these two means are 
not equal and that μi is indeed larger than μj. However, if the confidence interval for μi − μj 
includes 0, that is, if it extends from a negative number to a positive number, we cannot 
conclude that these two means are different.

We have presented the formulas for one-way ANOVA because they lend some insight 
into the procedure. However, the StatTools One-Way ANOVA procedure takes care of all 
the calculations, as we illustrate in Example 19.1.©
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Not For Sale19-2 One-Way ANOVA 19-9

Figure 19.3
Data for Cereal 
Experiment

1
2
3
4
5

24
25
26

Lowest Next-to-lowest Middle Next-to-highest Highest
A B C D E

340
376
378
371
389
417
250

347
428
219
431
345
329
374

444
281
378
425
284
349
346

456
471
484
448
564
395
546

358
427
325
428
461
375
399

Objective To use one-way ANOVA to see whether shelf height makes any difference in 
mean sales of Brand X, and if so, to discover which shelf heights outperform the others.

Solution
First, the sample sizes are equal—this is a balanced design. This is not absolutely neces-
sary in an experiment of this type, but since Midway is able to specify which stores use 
which shelving heights, it makes sense to use a balanced design. Second, this is a designed 
experiment, not an observational study. Midway deliberately chose the 125 stores in the 
experiment to be alike in as many ways as possible. This helps to ensure that any differ-
ences in sales across the five groups can be attributed to differences in shelf heights and 
not to other extraneous factors. Of course, it is virtually impossible to control for all other 
factors in an experiment such as this—the 125 stores are certainly not identical in all of 
their characteristics—but Midway has tried its best to keep them similar. Also, it has ran-
domly assigned the stores to treatment levels (shelf heights), rather than arbitrarily assign-
ing them. By using a random assignment, Midway avoids any possible bias it might have 
unconsciously introduced with a nonrandom assignment.

To analyze the data, select One-Way ANOVA from the StatTools Statistical Inference 
group, and fill in the resulting dialog box as shown in Figure 19.4. In particular, click the 
Format button and make sure the Unstacked option is checked (because there is a  separate 
sale column for each of the shelf heights), and select all five variables for analysis. (Note 
that the Stacked option would be appropriate if there were two columns of length 125 
each, one with the shelf height and the other with sales.) Finally, make sure only the Tukey 
option for confidence intervals is checked. (We will discuss these confidence  interval 
options in Section 19-4.)

Figure 19.4
StatTools Dialog 
Box for Confidence 
Intervals
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Not For Sale

19-10  Chapter 19 Analysis of Variance and Experimental Design

The one-way ANOVA output is shown in Figure 19.5. The summary statistics at the 
top indicate that the next-to-highest shelf height has the largest average sales, 426.3, almost 
100 boxes larger than the lowest shelf height, which has the smallest average sales. This 
information is confirmed by the side-by-side box plots in Figure 19.6. (Although these 
box plots are not created as part of the ANOVA output, they are always a useful addition.) 
The sample standard deviations vary from about 61 to 85 over the five treatment levels. 
Although these tend to indicate unequal variances, the equal-variance assumption is almost 
never satisfied exactly in any study, and this much discrepancy in the standard deviations is 
nothing to worry about—it certainly does not invalidate the analysis.

It appears from the summary statistics and the box plots that mean sales differ for dif-
ferent shelf heights, but are the differences significant? The test of equal means answers 

Figure 19.5  One-Way ANOVA Output

A
7 One-Way Anova for Selected Unstacked Variables
8 ANOVA Summary
9 Total Sample Size 125

10 Grand Mean 381.44

11 Pooled Std Dev 75.63

12 Pooled Variance 5719.19

13 Number of Samples 5

14 Confidence Level 95.00%

15

16 Lowest Next-to-lowest Middle Next-to-highest Highest
17 Data Set #1 Data Set #1 Data Set #1 Data Set #1 Data Set #1ANOVA Sample Stats
18 Sample Size 25 25 25 25 25

19 Sample Mean 334.92 378.68 383.44 426.28 383.88

20 Sample Std Dev 61.04 84.08 75.63 85.05 69.62

21 Sample Variance 3726.24 7069.56 5719.17 7234.21 4846.78

22 Pooling Weight 0.2000 0.2000 0.2000 0.2000 0.2000

23

24 Sum of Degrees of Mean
25 Squares Squares

F-Ra!o p-Value
FreedomOne Way ANOVA Table

26 Between Varia!on 104807.68 26201.92 4.58 0.00184

27 Within Varia!on 686303.12 120 5719.19

28 Total Varia!on 791110.80 124

29

30 Difference Tukey
31 Confidence Interval Tests of Means Lower Upper

32 Lowest-Next-to-lowest –43.76

33 Lowest-Middle

Next-to-lowest-Middle –4.76

–48.52

34 Lowest-Next-to-highest

Lowest-Highest –48.96

–91.36

35

36

37 Next-to-lowest-Next-to-highest

Next-to-lowest-Highest –5.20

–47.60

38

39 Middle-Next-to-highest –42.84

40 Middle-Highest –0.44

41 Next-to-highest-Highest 42.40

–103.0190249

–64.01902487

–107.7790249

–108.2190249

–150.6190249

–64.45902487

–106.8590249

–102.0990249

–59.69902487

–16.85902487

15.49902487

54.49902487

10.73902487

10.29902487

–32.10097513

54.05902487

11.65902487

16.41902487

58.81902487

101.6590249

B C D E F

The effect of unequal 
variances is mitigated 
by having equal, or 
nearly equal, sample 
sizes for the treatment 
levels. This is another 
reason for using a 
balanced design.
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Not For Sale19-2 One-Way ANOVA 19-11

this question. It appears in rows 26−28 of the output. The values in this ANOVA table are 
based on Equations (19.1)–(19.3). (The only part we didn’t discuss is the Total variation in 
row 28. It is based on the total variation of all observations around the grand mean in cell 
B10 and is used mainly as a check of the calculations. Note that SSB and SSW in cells B26 
and B27 add up to the total sum of squares in cell B28. Similarly, the degrees of freedom 
add up in column C.) The F-ratio in cell E26 is 4.58, the ratio of the mean squares in cells 
D26 and D27. Its corresponding p-value is 0.0018, nearly zero. This leaves practically no 
doubt that the five population means are not all equal. Shelf height evidently does make a 
significant difference in sales.

The 95% confidence intervals for ANOVA in rows 32–41 indicate which shelf 
heights differ significantly from which others. Any difference whose confidence interval 
does not include 0 is boldfaced. In this example, there is only one such difference, the 
one between the next-to-highest height and the lowest height. Not surprisingly, these are 
the treatment levels with the largest and smallest average sales. None of the other differ-
ences are significant. For example, even though the difference between the next-to-highest 
and next-to-lowest heights is 47.6, the corresponding confidence interval extends from a 
negative number to a positive number. Therefore, we cannot declare this difference to be 
statistically significant.

The main conclusion from this example is that shelf height definitely appears to make 
a difference in mean sales, at least for the population of stores similar to the ones in the 
study. Customers tend to purchase fewer boxes of cereal when they are placed on the bot-
tom shelf, and they tend to purchase more when they are placed on the next-to-highest 
shelf—presumably right around eye level. ■

Figure 19.6
Side-by-Side Box 
Plots of Sales

Box-whisker Plot Comparison

Highest/Unstacked
Data

*

*

*

*

*

Next-to-highest/
Unstacked Data

Middle/Unstacked
Data

Next-to-lowest/
Unstacked Data

Lowest/Unstacked
Data

0 100 200 300 400 500 600

19-2c Using a Logarithmic Transformation
Recall that the inferences based on the ANOVA procedure rely on two assumptions: equal 
variances across treatment levels and normally distributed data. Although these assump-
tions are never met exactly in any real study, you should check whether they are at least 
approximately valid. Often a look at side-by-side box plots, as in Figure 19.6, can indicate 
whether there are serious violations of these assumptions. For example, the box plots in 
this figure are reasonably symmetric and indicate reasonably similar variances, so that the 
ANOVA results should be valid. If the assumptions are seriously violated, however, you 
should not blindly report the ANOVA results. In some cases, a transformation of the data 
will help, as illustrated in Example 19.2.
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19-12  Chapter 19 Analysis of Variance and Experimental Design

 E X A M P L E  19.2 PAYMENTS FOR ORDERS AT REBCO

Rebco is a manufacturing company that supplies parts to many other manufacturing 
companies, its customers. Rebco is concerned about the time it takes these  customers 

to pay for their orders. The file Rebco Payments.xlsx contains data (a subset of which 
is  shown in Figure 19.7) on the most recent payment from 91 of its customers. The 
 customers are categorized as small, medium, and large. For each customer we see the 
number of days it took the customer to pay and the amount of the payment. Are there any 
 differences in the mean time to pay across the three customer sizes? What about differ-
ences across the mean payment amounts?

Figure 19.7
Data for Rebco 
Example

1
2
3
4
5
6
7

90
91 90

9192

A B C D E
Customer

1 Large
2 Small
3 Small
4 Small
5 Large
6 Small

89
23
15

12
21
20
21
14
29
22

1045
671

1352 7.209340257
5.613128106
5.587248658
5.433722004

7.53369371
5.505331536
5.918893854
6.951772164
6.508769137

274
267
229

1870
246
372Medium

Medium
Large

Customer Size Days Amount Log(Amount)

Objective To see how a logarithm transformation can be used to ensure the validity of 
the ANOVA assumptions, and to see how the resulting output should be interpreted.

Solution
Unlike Example 19.1, this is a one-factor observational study, where the single factor is 
customer size at three levels: small, medium, and large. The experimental units are the 
bills for the orders, and there are two dependent variables, days until payment and payment 
amount, that will be examined. Focusing first on the days until payment, you can see from 
the side-by-side box plots in Figure 19.8 that whatever differences there are appear to be 
slight. Perhaps the large customers pay, on average, a bit more promptly, but it is difficult 
to see from the plots whether the apparent differences are significant. Therefore, we turn 
to the numerical results. The summary results and the ANOVA table in Figure 19.9 show 

This graph in Figure 19.8 
indicates no violations 
of the ANOVA equal-
variance and normality 
assumptions.

Figure 19.8
Box Plots for Days 
Until Payment

Box-Whisker plot of Comparison of Days/Data Set #1

Customer Size = Small

Customer Size = Medium

Customer Size = Large

0 5 10 15 20 25 30 35
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Not For Sale19-2 One-Way ANOVA 19-13

Figure 19.9
ANOVA Results for 
Days Until Payment

One-Way ANOVA for Days by Customer Size
ANOVA Summary
Total Sample Size

7
A B C D E F

8

9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28

91
19.571
5.769

33.285
3

95.00%

Days (Large)
Data Set #1

Days (Medium)
Data Set #1

Days (Small)
Data Set #1

Grand Mean
Pooled Std Dev
Pooled Variance
Number of Samples
Confidence Level

ANOVA Sample Stats

Sample Size
Sample Mean
Sample Std Dev
Sample Variance
Pooling Weight

20
18.100
4.887

23.884
0.2159

39
20.487
5.707

32.572
0.4318

32
19.375
6.318

39.919
0.3523

OneWay ANOVA Table
Between Varia!on 77.242

2929.044
3006.286

2
88
90

38.621
33.285

1.160 0.3181
Within Varia!on
Total Varia!on

Sum of
Squares

Degrees of
Freedom

Mean
Squares F-Ra!o p-Value

The analysis of the amounts these customers pay is quite different. This is immedi-
ately evident from the side-by-side box plots in Figure 19.10. Actually, two things are 
clear. First, there is little doubt that small customers tend to have lower bills than medium-
size customers, who in turn tend to have lower bills than large customers. Second, how-
ever, you can see that the equal-variance assumption is grossly violated. There is very little 
variation in payment amounts from small customers and a large amount of variation from 
large customers. This situation should be remedied before running any formal ANOVA.

Figure 19.10
Box Plots for 
Payment Amounts

Box-Whisker Plot of Comparison of Amount/Data Set #1

Customer Size = 
Small

Customer Size = 
Medium

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Customer Size = 
Large

that the differences between the sample means are not even close to being statistically 
significant. The p-value for the test is only 0.318. Rebco cannot reject the null hypothesis 
that customers of all sizes take, on average, the same number of days to pay.

The graph in Figure  
19.10 indicates definite 
violations of the 
ANOVA equal-variance 
assumption.
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19-14  Chapter 19 Analysis of Variance and Experimental Design

One common method for equalizing variances is to take logarithms of the dependent 
variable and then use the transformed variable as the new dependent variable. This log 
transformation tends to spread apart small values and compress together large  values—
exactly what is needed in this example. After taking the logarithms of the payment 
amounts, we obtain the box plots in Figure 19.11. The log transformation retains the order-
ing, so that logs of small amounts are still less than logs of large amounts, but the variances 
are now much closer to being equal. The resulting ANOVA on the log variable appears 
in Figure 19.12. The p-value in the ANOVA table is again the key for checking whether 
we can reject the equal-means hypothesis. The fact that it is virtually 0 indicates that the 
means of the log variables are not equal.

What does this say about the original variables? The bottom part of the output in 
Figure 19.12 answers this question, although we have to be very careful when inter-
preting the results. First, when we ran the StatTools One-Way ANOVA procedure on 
the log of the Amount variable, we requested the confidence intervals in rows 32–34.2 
However, each of these is a confidence interval for the difference between means of the 
log-transformed variables. Because they are in log units, these numbers have little prac-
tical meaning. The trick is to take their antilogarithms (with the EXP function), as shown 
in rows 37–39, and then interpret the antilogs correctly. It can be shown that the  correct 
interpretation is that each antilog is a ratio of medians for the respective treatment  levels. 
(If the populations are reasonably symmetric, the antilogs can also be interpreted as 
approximate ratios of means.) For example, our best guess is that the median amount 
paid by large customers is 2.253 times as large as the median amount paid by medium-
sized customers, and we are 95% confident that this ratio is between 1.877 and 2.705. 
Because the populations are reasonably symmetric (see the box plots in Figure 19.10), 
this same statement applies, at least approximately, to the means.

The bottom line for Rebco is that its large customers have bills that are typically over 
twice as large as those for medium-sized customers, which in turn are typically over twice 

2Again, we will discuss the type of confidence interval method shown here in Section 19-4.

Figure 19.11
Box Plots of Log-
Transformed 
Amounts

Box-Whisker Plot of Comparison of Log(Amount)/Data Set #1

Customer Size = small

Customer Size = Medium

Customer Size = Large

0 1 2 3 4 5 6 7 8
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Not For Sale19-2 One-Way ANOVA 19-15

Figure 19.12  ANOVA Results for Log-Transformed Amounts

One-Way ANOVA for Log(Amount) by Customer Size
ANOVA Summary

Total Sample Size

7

A B C D E F

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

91

6.0961
0.2787

0.0777

3

95.00%

Log(Amount)
(Large)

Data Set #1

Log(Amount)
(Medium)

Data Set #1

Log(Amount)
(Small)

Data Set #1

Grand Mean

Pooled Std Dev

Pooled Variance

Number of Samples

Confidence Level

ANOVA Sample Stats
Sample Size

Sample Mean

Sample Std Dev

Sample Variance

Pooling Weight

20

7.0474

0.3030

0.0918

0.2159

39

6.2350

0.2863

0.0820

0.4318

32

5.3323

0.2525

0.0637

0.3523

OneWay ANOVA Table
Between Varia!on 37.5191

6.8346

44.3538

2

88

90

0.8123 0.629549626

1.525627517

0.744221983

0.995099974

1.904488762

1.061244697

1.7151

0.9027

2.253

5.557

2.466

1.877

4.598

2.105

2.705

6.716

2.890

18.7596

0.0777

241.5401 <0.0001

Within Varia!on

Total Varia!on

Sum of
Squares

Degrees of
Freedom

Mean
Squares

Difference
of Means Lower

Tukey
Upper

F-Ra!o p-Value

Confidence Interval Tests
Log(Amount) (Large)-Log(Amount)(Medium)

Log(Amount) (Large)-Log(Amount)(Small)

Amount(Large)-Amount(Medium)

Amount(Large)-Amount(Small)

Amount(Medium)-Amount(Small)

Log(Amount) (Medium)-Log(Amount)(Small)

Antilogs

38

39

The “ratio of medians” interpretation discussed in this example is the correct interpre-
tation in any comparison problem where a log transformation is used (probably to equalize 
variances) on the dependent variable. It applies not only to ANOVA studies such as Rebco’s 
but to the two-sample t procedures discussed in Chapters 8 and 9.

as large as those for small customers. Even though all customers currently tend to take 
about the same number of days to pay, there is a greater incentive to get the large custom-
ers to pay early—more money is at stake. ■
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19-16  Chapter 19 Analysis of Variance and Experimental Design

P R O B L E M S

Note: Student solutions for problems whose numbers appear within a 
colored box are available for purchase at www.cengagebrain.com.

Level A
1. An automobile manufacturer employs sales 

 representatives who make calls on dealers. The 
 manufacturer wishes to compare the  effectiveness 
of four different call-frequency plans for the sales 
 representatives. Thirty-two representatives are 
 chosen at random from the sales force and randomly 
assigned to the four call plans (eight per plan). The 
 representatives follow their plans for 6 months, and 
their sales for the 6-month study period are recorded. 
These data are listed in the file P19_01.xlsx.
a. Do the sample data support the hypothesis that at 

least one of the call plans helps produce a higher 
average level of sales? Perform an appropriate 
statistical test and report a p-value.

b. If the sample data indicate the existence of mean 
sales differences across the call plans, which plans 
produce significantly different average sales levels 
at the 95% level?

2. Consider a large chain of supermarkets that sell their 
own brand of potato chips in addition to many other 
name brands. Management would like to know whether 
the type of display used for the store brand has any 
effect on sales. There are four types of displays being 
considered, so management decides to choose 24 
similar stores to serve as experimental units. A random 
six of these are instructed to use display type 1, another 
random six are instructed to use display type 2, a third 
random six are instructed to use display type 3, and 
the final six stores are instructed to use display type 
4. For a period of one month, each store keeps track 
of the fraction of total potato chips sales that are of 
the store brand. The data for the 24 stores are listed in 
the file P19_02.xlsx. Note that one of the stores using 
display 3 is blank. This store did not follow instructions 
properly, so its observation is disregarded.
a. Why do you think each store keeps track of the 

fraction of total potato chips sales that are of 
the store brand? Why do they not simply record 
the total amount of sales of the store brand potato 
chips?

b. Do the data suggest different mean proportions of 
store brand sales at the 10% significance level? 
If so, construct 90% confidence intervals for the 
differences between all pairs of mean proportions 
to identify which of the display types are associated 
with higher fractions of sales.

3. National Airlines recently introduced a daily (i.e., early 
morning) nonstop flight between Houston and Chicago. 
The vice president of marketing for National Airlines 

decided to perform a statistical test to see whether 
National’s average passenger load on this new flight 
was different from that of each of its two major 
 competitors (which we will call competitor 1 and 
 competitor 2). Ten early-morning flights were selected 
at random from each of the three airlines and the 
percent of unfilled seats on each flight was recorded. 
These data are listed in the file P19_03.xlsx.
a. Is there evidence that National’s average passenger 

load on the new flight is different from that of its 
two competitors? Report a p-value and interpret the 
results of the statistical test.

b. Select an appropriate significance level and 
construct confidence intervals for all pairs of 
differences between means. Which of these 
differences, if any, are statistically significant at the 
selected significance level?

4. A hotel manager would like to know whether 
customers who pay by different methods have 
different-sized bills. She divides all customers into four 
categories: those who pay by check or cash, those who 
pay with a VISA or MasterCard, those who pay with an 
American Express card, and those who use some other 
type of credit card. She then collects data on daily bills, 
which are listed in the file P19_04.xlsx. Note that these 
bills contain the room charge, plus any other charges to 
the customer’s account.
a. Test whether the different categories of customers 

have different-sized bills at the 10% significance 
level.

b. Based on 90% confidence intervals for all pairs 
of differences between means, which of these 
differences, if any, are significantly nonzero at the 
10% significance level?

5. A company sells identical soap in four different  packages 
at the same price. The sales of each package type for 12 
months are listed in the file P19_05.xlsx. Is there any 
indication of differences in the mean sales of this brand 
of soap across the various package types? Perform an 
appropriate statistical test and report a p-value.

Level B
6. Do graduates of undergraduate business programs with 

different majors tend to earn disparate average starting 
salaries? Consider the data listed in the file P19_06 
.xlsx.
a. Is there any reason to doubt the equal-variance 

assumption made in the one-way ANOVA model in 
this particular case? Support your response to this 
question.

b. Assuming that the variances of the four underlying 
populations are indeed equal, can you reject at the 
10% significance level that the mean starting salary 
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Not For Sale19-3 Using Regression to Perform ANOVA 19-17

is the same for each of the given business majors? 
Explain why or why not.

c. Based on 90% confidence intervals for all pairs 
of differences between means, which of these 
differences, if any, are statistically significant at the 
10% significance level?

7. A company that employs a large number of salespeople 
is interested in determining which of the following 
subsets of the sales staff sells, on average, the 
most: (1) those whose compensation consists of a fixed 
salary, (2) those whose compensation is based strictly 
on commission, and (3) those whose compensation 
is based on a smaller fixed portion and a reduced 
commission rate. Sales data (in dollars) from the 
previous quarter are collected for randomly selected 

salespeople who are compensated according to one of 
the three aforementioned schemes. The data are listed 
in the file P19_07.xlsx.
a. Is there any reason to doubt the equal-variance 

assumption made in the one-way ANOVA model in 
this particular case? Support your response to this 
question.

b. Can you reject at the 5% significance level  
that the mean sales are the same for each of the 
three groups of salespeople? Explain why or  
why not.

c. Based on 95% confidence intervals for all pairs 
of differences between means, which of these 
differences, if any, are statistically significant at the 
5% significance level?

19-3 USING REGRESSION TO PERFORM ANOVA
The method we discussed in the previous section for performing ANOVA—calculating 
sums of squares by rather complex formulas and showing the results in an ANOVA table—
is the traditional way of implementing ANOVA. Indeed, it is the method implemented in 
most statistical software packages, and it can be extended to many experimental designs 
besides one-way ANOVA. However, it is worth knowing that most of the same ANOVA 
results can be obtained by multiple regression analysis, as we will briefly discuss in this 
section. The advantage of using regression is that many people understand regression bet-
ter than the formulas used in traditional ANOVA. The disadvantage is that some of the 
traditional ANOVA output, such as the confidence intervals for mean differences, can be 
obtained with regression only with some difficulty—they are not standard parts of the 
regression output. Therefore, regression is not a perfect substitute for traditional ANOVA, 
but it can supplement the analysis.

To perform ANOVA with regression, we run a regression with the same dependent 
variable as in ANOVA and use dummy variables for the treatment levels as the only explan-
atory variables. For example, if there is a single factor with 5 treatment levels, we create 
4 dummy variables, one for each of the treatment levels except a designated “reference” 
level, and we run the regression with these 4 dummies as the only explanatory variables. In 
the resulting regression output, the ANOVA table will be exactly the same as the ANOVA 
table we obtain from traditional ANOVA, and the coefficients of the dummy variables will 
be estimates of the mean differences between the corresponding treatment levels and the 
reference level.

For example, if there are 5 treatment levels and level 5 is designated as the reference 
level, then the regression coefficients will estimate the mean differences μ1 − μ5, μ2 − μ5, 
μ3 − μ5, and μ4 − μ5. Therefore, the reported confidence intervals for these coefficients are 
really confidence intervals for these mean differences. However, we do not automatically 
obtain confidence intervals for other mean differences such as μ2 − μ3. Also, the confi-
dence intervals we obtain are not of the “Tukey” type we obtained with ANOVA. (They are 
of the “no correction” type we will discuss in the next section.) On the plus side, however, 
the regression output provides an R2 value, the percentage of the variation of the dependent 
variable explained by the various treatment levels of the single factor. This R2 value is not 
part of the traditional ANOVA output.

To see how this works, we revisit Midway’s cereal experiment from Example 19.1.
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19-18  Chapter 19 Analysis of Variance and Experimental Design

 E X A M P L E  19.1 THE EFFECT OF SHELF HEIGHT ON CEREAL SALES (CONTINUED)

Recall that the Midway supermarket chain ran a study on 125 stores to see whether 
shelf height, set at five different levels, has any effect on sales of a popular brand of 

cereal. (See the file Cereal Sales.xlsx.) Does Midway get the same results as before if it 
analyzes the data with regression?

Objective To see how Midway can analyze its data with regression, using only dummy 
variables for the treatment levels.

Solution
Before we can run a regression, we must first reorganize the data. Recall that the original 
data in the file are in unstacked form—one sales column for each shelf height. For regres-
sion, the data must be in stacked form. This is easy to accomplish with StatTools. First, 
select Stack from the Data Utilities group in StatTools. In the resulting dialog box (not 
shown), check all five variables, and specify Shelf Height as the Category Name and Sales 
as the Value Name. This creates a new worksheet with two long variables called Shelf 
Height and Sales. Next, create a new StatTools data set for the stacked data, and then use 
StatTools to create dummies for the different shelf heights, based on the Shelf Height vari-
able. The results for a few of the stores appear in Figure 19.13.

1
2

3
4
5
6

124
125
126 Highest

A B C D E F G
Shelf Height
Lowest 340

Lowest 376
Lowest 378
Lowest 371
Lowest 395
Highest 461
Highest

1

0

0
0
0
0
1
1

0

1

1
1
1
1
0
0

0

0
0
0
0
0
0
0

375
399

Sales Highest Lowest Middle
0

0
0
0
0
0
0
0

Next-to-highest
0

0
0
0
0
0
0
0

Next-to-lowest

Figure 19.13  Stacked Variables and Dummy Variables

We now run a multiple regression with the Sales variable as the dependent variable 
and the Shelf Height dummies as the explanatory variables. We used Lowest as the refer-
ence level, although any level could have been used. The regression output is shown in 
Figure 19.14.

The first thing to notice is that the ANOVA table from the regression output is identi-
cal to the ANOVA table from traditional ANOVA. (See Figure 19.5.) This will always be 
the case. You can infer, because of the extremely low p-value in this table, that the popula-
tion regression coefficients are not all 0. However, because these regression coefficients are 
really mean differences between the various levels and the reference level, you can infer that 
these mean differences are not all 0. Specifically, at least one of the upper heights differs 
from the lowest height. The estimates of the mean differences, given in the range B20:B23, 
are the observed average differences in sales between upper heights and the lowest height. 
Also, the constant in cell B19 is the observed average sales for the lowest height.

If you compare the confidence intervals in the range F20:G23 of the regression out-
put to the corresponding confidence intervals for the ANOVA output in Figure 19.5, you 
will see that they are somewhat different. For example, the confidence interval for μ2 − μ1 
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Not For Sale19-3 Using Regression to Perform ANOVA 19-19

Mul!ple Regression for Sales

Summary

ANOVA Table

Regression Table Coefficient

Constant 334.92 15.12506882
21.39007745
21.39007745
21.39007745
21.39007745

22.1434 <0.0001

<0.0001
0.0430

304.9734164
6.609135289
6.169135289
49.00913529
1.409135289

364.8665836
91.31086471
90.87086471
133.7108647
86.11086471

0.0238
0.0251

2.2889
2.2683
4.2711
2.0458

48.96
48.52
91.36
43.76

Highest
Middle
Next-to-highest
Next-to-lowest

Standard
Error t-Value p-Value Lower

Confidence Interval 95%
Upper

Mul"ple
R

7

8
9

10
11
12
13

14
15
16
17
18

19
20
21
22
23

A B C D E F G

Degrees of
Freedom

Explained 4 104807.68 26201.92 4.5814 0.0018
5719.192667686303.12120Unexplained

Sum of
Squares

Mean of
Squares F-Ratio p-Value

0.3640 0.1325 0.1036 75.62534408

R-Square
Adjusted
R-Square

StErr of
Estimate

Figure 19.14  Regression Output for Cereal Example

from Figure 19.14 extends from 1.41 to 86.11, whereas the similar confidence interval in 
Figure 19.5 extends from −15.50 to 103.02. (We had to reverse the signs to get the confi-
dence interval for μ2 − μ1, not μ1 − μ2.) In particular, the confidence interval from regres-
sion, although centered around the same mean difference, is much narrower. In fact, it is 
entirely positive, leading us to conclude that this mean difference is significant. The ANOVA 
output led us to the opposite conclusion. The reason for this apparent discrepancy is the 
subject of the next section. It is basically because the Tukey intervals quoted in the ANOVA 
output are more “conservative” (wider) and typically lead to fewer significant differences.

One final comment about the regression output regards its R2 value. We see that dif-
ferences in the shelf height account for 13.25% of the variation in sales. This means that 
although shelf height has some effect on sales, there is a lot of “random” variation in sales 
across stores that cannot be accounted for by shelf height. ■

P R O B L E M S

Level A
8. For the National Airlines data in Problem 3 (see the 

file P19_03.xlsx), perform a regression analysis using 
dummy variables for the airlines. Comment on the 
meaning of the regression output. How does it compare 
with the ANOVA output from Problem 3? Does it give 
you any extra insights?

9. For the soap data in Problem 5 (see the file  
P19_05.xlsx), perform a regression analysis using 
dummy variables for the different packages.  
Comment on the meaning of the regression output. 
How does it compare with the ANOVA output  
from Problem 8? Does it give you any extra  
insights?

Level B
10. In Problem 6, the salary data for graduates of the 

undergraduate business programs (see the file P19_06.
xlsx) represent an unbalanced design—there are more 
students from some majors than others. Run a regression 
on starting salaries, using dummies for majors as the 
explanatory variables. Do you get the same results as 
with the ANOVA output from Problem 6? Specifically, 
consider the constant term and the regression 
coefficients in the output. Is the constant equal to the 
average starting salary for the reference major? (You can 
designate any of the majors as the reference major.) Are 
the regression coefficients equal to average differences 
between the various majors and the reference major?
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19-20  Chapter 19 Analysis of Variance and Experimental Design

19-4 THE MULTIPLE COMPARISON PROBLEM
In many statistical analyses, including ANOVA studies, we want to make statements about 
multiple unknown parameters. For example, in the cereal study (Example 19.1), we wanted 
to create confidence intervals for differences between each pair of means—10 confidence 
intervals in all.3 Any time we make such a statement, there is a chance that we will be 
wrong; that is, there is a chance that the true population value will not be inside the confi-
dence interval. If we create a 95% confidence interval, say, then the error probability is 0.05. 
In fact, as we explained in Chapter 8, the endpoints of the confidence interval are chosen 
so that the error probability will be 1 minus the confidence level chosen. What do we mean 
by “error probability,” however, when we make several statements based on the same data? 
This is the issue addressed in this section.

We can use simulation to get an idea of the problem. In the file Multiple Comparison 
.xlsx, we simulate a data set very much like those encountered in one-way ANOVA. (See 
the range A10:H70 of Figure 19.15. Note that a lot of rows have been hidden.) The data in 
this range correspond to data from a one-factor design with 8 treatment levels and 60 obser-
vations per level—480 observations all together. However, we entered the same formula, 
=NORMINV(RAND(),0,1), in each cell. This means that each treatment level is generat-
ing normal data with mean 0 and standard deviation 1. Therefore, we know that the equal-
means hypothesis of ANOVA is true—all population means are equal to 0. Nevertheless, 
we calculate 95% confidence intervals for each of the 28 possible differences between 
means in rows 84–111, using the two-sample procedure described in Chapter 8. If a con-
fidence interval does not include 0, we indicate it as a significant difference by putting 
“Yes” in column D. Then if at least one of these 28 confidence intervals is significant, we 
record “Yes” in cell D113. Finally, we replicate this procedure 500 times in columns J and 
K, each time recording the value in cell D113, and we report the percentage of replications 
with “Yes” in cell K5. As you can see, the reported percentage (in cell K5) is close to 50%.

What does this prove? Recall that all of the population means equal 0. This is how we 
simulated the random numbers in the first place. Therefore, if any one of the 28 confidence 
intervals in rows 84–111 turns out to be significant and we report it as such, we are making 
an error. That is, we are reporting that these two population means are not equal, when in 
fact they both equal 0. Because none of the 28 confidence intervals in rows 84–111 should 
be significant, we will have a perfect record only if we report “No” in cell D113. Of course, 
a perfect record cannot always be obtained, but by using a 95% confidence level, you might 
expect a perfect record in 95% of the replications. Unfortunately, the simulation shows that 
we are not even close to this. We get a perfect record only about half of the time! In statisti-
cal terms, if we run each confidence interval at the 95% level, the overall confidence level 
(of having all 28 statements correct) is much less than 95%. (Worse yet, we are never really 
sure how much less.) This is called the multiple comparison problem. It says that if we 
make a lot of statements, each at a given confidence level such as 95%, then the chance of 
making at least one wrong statement is much greater than 5%.

The question is how to get the overall confidence level equal to the desired value, such 
as 95%. Or in the simulation in Figure 19.15, how can we get the error rate in cell K5 to be 
approximately 5%? The answer is that we need to correct the individual confidence inter-
vals, so that we do not calculate them exactly as described in Chapter 8. Several corrections 
have been proposed by statisticians, and StatTools includes three of the most popular cor-
rection methods in its one-way ANOVA procedure: the Bonferroni, Tukey, and Scheffé 
methods. (They can be chosen from the dialog box shown in Figure 19.16.) Although the 

3Note that if a confidence interval for a difference such as μ1 − μ2 is reported, the confidence interval for its oppo-
site, μ2 − μ1, is not reported. This is because the latter is simply the negative of the former.
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Not For Sale19-4 The Multiple Comparison Problem 19-21

Simula!on of mul!ple comparison problem

Percent of replica!ons with any significant differences

Data table for whether any differences are significantSimulation of data and confidence intervals

Sample8
–1.38261
–0.33695

0.67425
0.142446
0.840802
–0.46184

–0.04096

Sample7
–0.75971
0.637854
1.083935
0.482804
0.028709
0.728025

0.12165

Sample6
0.983571
0.396659
0.571373
–0.16077
1.997633
0.232316

0.158603

0.9707620.8979671.06218

Sample5
–0.57045
2.309349
0.300742
–0.06452
–0.92909
–0.07783

0.023595

0.818163

Sample4
0.978887152
1.039012856
–0.02990212
0.757778728
–1.01662996
–1.00944356

–0.09419457

0.913152569

Sample3
0.7533667

0.59737356
0.43801209
–0.4507764
–0.2320311

0.6977043

–0.0541804

0.97389301

Sample2
1.81343727
–0.0254418
0.74692562
–0.2595726
0.00504709
–0.5515881

–0.1780704

Sample1
0.217689683

–0.176004652
–0.358308438
–1.238068644

1.067266927
–2.719100304

–0.037980741

0.980308296 1.01357647

0.95636008
0.17460666
2.00171748

Upper limit Significant?

Any Significant?

No
No
No
No
No
No

No

0.48960289
0.36571288
0.40572704
0.38646654
0.54907127
0.51211795

Lower limit
–0.2094235
–0.3333135
–0.2932994
–0.3125599
–0.1499552
–0.1869085

Means

Stdevs

Pooled stdev
StErr of diff
t-multiple

95% confidence intervals for differences between means
Difference
1 minus 2
1 minus 3
1 minus 4
6 minus 7
6 minus 8
7 minus 8

Simula!on of mul!ple comparison problem

Simulation of data and confidence intervals

(from data table below)

Replication Any Significant?

In this simulation, samples from several normal populations, all with the same mean and standard
deviation, will be simulated, and the usual 95% confidence interval is constructed for each mean
difference. Then a data table is used to check the percentage of replications that have at least
one confidence interval that does not include 0. It is much larger than 5%.

A
1
2
3
4
5
6
7
8

B C D E F G H I J K L M N

1
2
3

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
98
99

100

No
No
Yes

Yes
Yes

Yes
Yes
Yes

Yes
Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes
Yes

No
No

No

No

No

No

No

No

No

No

No

No
No

48.2%

101
102
103
104
498
499
500

9
10
11
12
13
14
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

109
110
111
112
113
114
115
509
510
511

No

Figure 19.15  Simulation to Illustrate the Multiple Comparison Problem

Figure 19.16
One-Way ANOVA 
Dialog Box with 
Confidence 
Intervals Options
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19-22  Chapter 19 Analysis of Variance and Experimental Design

details of these methods are beyond the scope of this book, they are all methods for coping 
with the multiple comparison problem. They differ only in the multiplier they use in the 
typical confidence interval formula for a difference between means:

Yi − Yj ± multiplier × "MSW(1/ni + 1/nj)

Recall that the multiplier used for the usual “no-correction” method from Chapter 8 is 
a t-value that, for a 95% confidence level, is approximately equal to 2. The correction meth-
ods all use multiples that are larger than this. The idea is that by using a larger multiplier, 
we get a wider confidence interval. This decreases the chance that the confidence interval 
will fail to include the true mean difference, which in turn decreases the chance that at least 
one of several such confidence intervals will fail to include its true mean difference. The 
larger the multiplier is, the more conservative the confidence intervals will be (where “con-
servative” means wider intervals). Scheffé’s and Bonferroni’s methods tend to be the most 
conservative, whereas Tukey’s method strikes a balance between being too conservative 
and not conservative enough. It is the method favored by many researchers when the focus 
is on many confidence intervals for mean differences, as in Example 19.1.

To follow the simulation one step further, the multiplier used in the individual confi-
dence intervals in rows 84–111 of Figure 19.15 is approximately equal to 2, as shown in 
cell B80. Using appropriate formulas (not presented here), it can be shown that the multi-
pliers for the Tukey, Bonferroni, and Scheffé methods are 3.04, 3.27, and 3.77, respectively. 
Furthermore, if the Tukey multiplier is used in the simulation, the percentage in cell K5 
becomes approximately 5%, exactly what we want.

To see how these correction methods might affect results, we report all four types of 
confidence intervals for the cereal data of Example 19.1 in Figure 19.17, with the results rear-
ranged slightly to fit better on the printed page. (We reported only the Tukey intervals earlier.) 
You should note the following. First, the confidence intervals get wider as we move from no 
correction (from Chapter 8) to Tukey to Bonferroni to Scheffé. Second, all three correction 
methods report exactly the same significant differences. Specifically, they all report that the 
only significant difference is between the next-to-highest and lowest shelf heights. The three 
correction methods do not agree exactly in all data sets, but they usually produce similar 
results. In contrast, the no-correction method finds 7 of the 10 differences to be significant, a 
very different result. This is typical. Because this method does not correct for the number of 
confidence intervals being reported, it tends to find too many significant differences.

Confidence Interval Tests
Difference
of Means

–43.76 –86.11086471 –1.409135289 –104.9327306 17.41273061 –103.0190249 15.49902487 –110.6837587 23.16375867

18.40375867

–24.43624133

17.96375867

62.16375867

19.32375867

61.72375867

24.08375867
66.48375867

109.3237587

–115.4437587

–158.2837587

–115.8837587

–71.68375867

–114.5237587

–72.12375867

–109.7637587
–67.36375867

–24.52375867

10.73902487

–32.10097513

10.29902487

54.49902487

11.65902487

54.05902487

16.41902487
58.81902487

101.6590249

–107.7790249

–150.6190249

–108.2190249

–64.01902487

–106.8590249

–64.45902487

–102.0990249
–59.69902487

–16.85902487

12.65273061

–30.18726939
12.21273061

56.41273061

13.57273061
55.97273061

18.33273061
60.73273061

103.5727306

–109.6927306

–152.5327306
–110.1327306

–65.93273061

–108.7727306
–66.37273061

–104.0127306
–61.61273061

–18.77273061

–6.169135289

–49.00913529
–6.609135289

37.59086471

–5.249135289
37.15086471

–0.489135289
41.91086471

84.75086471

Lower Upper
No Correc"on

Lower Upper Lower Upper Lower Upper
Bonferroni Tukey Scheffe

–90.87086471

–133.7108647
–91.31086471

–47.11086471

–89.95086471
–47.55086471

–85.19086471
–42.79086471

0.049135289

–48.52

–91.36
–48.96

–4.76

–47.60
–5.20

–42.84
–0.44

42.40

Lowest-Next-to-lowest

Lowest-Next-to-highest
Lowest-Highest

Next-to-lowest-Middle

Next-to-lowest-Next-to-highest
Next-to-lowest-Highest

Middle-Next-to-highest
Middle-Highest

Next-to-highest-Highest

Lowest-Middle

30

A B C D E F HG I J

31

32

33
34

35

36
37

38
39
40

41

Figure 19.17  Confidence Intervals from Different Methods

At this point, it is natural to ask why there are so many methods. The reason has to do 
with the purpose of the study. A researcher who initiates a study might have a particular 
interest in a few specific differences. For example, the analyst in Example 19.1 might be 
particularly interested in the differences between the lowest height and each of the other 
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Not For Sale19-4 The Multiple Comparison Problem 19-23

four heights. The whole study is intended to study these specific differences. In this case, the 
 differences of interest are called planned comparisons. On the other hand, the analyst might 
initiate the study just to see what differences there are. This analyst will examine all pair-
wise differences to see which are significant. Here we talk about unplanned comparisons 
because the analyst does not specify which differences to focus on before collecting the data.

In the case of planned comparisons, if there are only a few differences of  interest, 
it is usually acceptable to report confidence intervals for these differences using the 
 no- correction method. If there are more than a few planned comparisons (even trained 
statisticians do not always agree on the interpretation of “a few”), then it is better to report 
Bonferroni intervals. In the case of unplanned comparisons, the Tukey method is usually 
the preferred method. It keeps the overall confidence level close to the desired level (such 
as 95%) without making the intervals overly wide. More important, it keeps the entire 
study from becoming a “fishing expedition,” where a few differences become significant 
just by the luck of the draw (as occurred in the simulation in Figure 19.15).

The Scheffé method can be used for planned or unplanned comparisons. It tends to 
produce the widest intervals because it is intended not only for differences between means, 
such as μ2 − μ4, but also for more general contrasts, where a contrast is the difference 
between weighted averages of means. For example, if the analyst in Example 19.1 is inter-
ested in how the lowest height compares to the average of the other four heights, then the 
difference μ1 − (μ2 + μ3 + μ4 + μ5)/4 would be of interest. Although the analysis of gen-
eral contrasts such as this is deferred until the next section, we note that Scheffé’s method 
was developed specifically to deal with them. If we are interested only in simple differ-
ences like μ2 − μ4, then Tukey’s method should be used instead.

P R O B L E M S

Level A
11. Consider again the one-way ANOVA hypothesis 

test described in Problem 1. Address the multiple 
 comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
 confidence level of approximately 95%. Summarize 
your results. Recall that the relevant data are listed in 
the file P19_01.xlsx.

12. Consider again the one-way ANOVA hypothesis 
test described in Problem 2. Address the multiple 
comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
confidence level of approximately 90%. How do these 
results compare to the uncorrected 90% confidence 
intervals? Recall that the relevant data are listed in the 
file P19_02.xlsx.

13. Consider again the one-way ANOVA hypothesis 
test described in Problem 3. Address the multiple 
 comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
 confidence level of approximately 99%. Compare 
the widths of the confidence intervals generated with 
each of these  methods with those of uncorrected 99% 
 confidence intervals. Explain your findings. Recall that 
the relevant data are listed in the file P19_03.xlsx.

14. Consider again the one-way ANOVA hypothesis 
test described in Problem 4. Address the multiple 
comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
confidence level of approximately 90%. Summarize 
your results. Recall that the relevant data are listed in 
the file P19_04.xlsx.

15. Consider again the one-way ANOVA hypothesis 
test described in Problem 5. Address the multiple 
 comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
 confidence level of approximately 99%. How do these 
results compare to the uncorrected 99% confidence 
 intervals? Recall that the relevant data are given in the 
file P19_05.xlsx.

Level B
16. Consider again the one-way ANOVA hypothesis test 

described in Problem 6. Suppose that we are interested 
in comparing the mean starting salary of accounting 
students with that of each of the other three majors 
(i.e., marketing, finance, and management). Recall that 
the relevant data are listed in the file P19_06.xlsx.
a. Which method for generating confidence intervals 

for mean differences is most appropriate in this 
situation? Explain your choice.
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19-5 TWO-WAY ANOVA
The examples discussed so far in this chapter have been single-factor designs. There is 
a single factor, such as shelf height in Example 19.1 or customer size in Example 19.2, 
that we observe at several levels. The question then is whether the mean of a dependent 
variable is equal across all levels. In this section we allow two factors, each at several 
levels. As you will see, some of the ideas from one-way ANOVA carry over to two-way 
ANOVA. However, there are differences in the data setup, the analysis itself, and, perhaps 
most important, the types of questions we ask. Because an abstract discussion of two-way 
ANOVA can be difficult to follow, we immediately introduce Example 19.3.

b. Apply the method identified in part a to estimate the 
mean differences of interest. Briefly interpret your 
findings.

17. Consider again the one-way ANOVA hypothesis test 
described in Problem 7. Suppose that we are interested 
in comparing the mean sales achieved by salespeople 
with varying compensation schemes. In other words, 
we are interested in making all possible comparisons at 

this point. Recall that the relevant data are listed in the 
file P19_07.xlsx.
a. Which method for generating confidence intervals 

for mean differences is most appropriate in this 
situation? Explain your choice.

b. Apply the method identified in part a to estimate the 
mean differences of interest. Briefly interpret your 
findings.

 E X A M P L E  19.3 DRIVING DISTANCES FOR GOLF BALL BRANDS

If you are a golfer, or even if you have ever seen golf ball commercials on television, you 
know that a number of golf ball manufacturers claim to have the “longest ball,” that is, 

the ball that goes the farthest on drives. This example illustrates how these claims might 
be tested. We assume that there are five major brands, labeled A through E. A consumer 
testing service runs an experiment where 60 balls of each brand are driven under three tem-
perature conditions. The first 20 are driven in cool weather (about 40 degrees), the next 20 
are driven in mild weather (about 65 degrees), and the last 20 are driven in warm weather 
(about 90 degrees). The goal is to see whether some brands differ significantly, on average, 
from other brands and what effect temperature has on mean differences between brands. 
For example, it is possible that brand A is the longest ball in warm weather but some other 
brand is longest in cool temperatures.

Objective To use two-way ANOVA to analyze the effects of golf ball brands and tem-
perature on driving distances.

Solution
This example represents a controlled experiment. The consumer testing service decides 
exactly how to run the experiment, namely, by assigning 20 randomly chosen balls of each 
brand to each of three temperature levels. In our general terminology, the experimental 
units are the individual golf balls and the dependent variable is the length (in yards) of each 
drive. There are two factors: brand and temperature. The brand factor has five treatment 
levels, A through E, and temperature has three levels, cool, mild, and warm. The design 
is balanced because the same number of balls, 20, is used at each of the 5 × 3 = 15 treat-
ment level combinations. In fact, balanced designs are the only two-way designs we will 
discuss in this book. (The analysis of unbalanced designs is more complex and is best 
left to a more advanced book.) There is one further piece of terminology. We call this a 
full factorial two-way design because we test golf balls at each of the 15 possible treat-
ment level combinations. If, for example, we decided not to test any brand A balls at a 
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temperature of 65 degrees, then the resulting experiment would be called an incomplete 
design. We will discuss incomplete designs briefly in the next section—and why they are 
sometimes used—but full factorial designs are preferred whenever possible.

In a full factorial design, we assign experimental units to each treatment level 
combination. In an incomplete design, we assign experimental units to some of the 
treatment level combinations but not to all of them.

How should the consumer testing service actually carry out the experiment? One pos-
sibility is to have 15 golfers, each of approximately the same skill level, hit 20 balls each. 
Golfer 1 could hit 20 brand A balls in cool weather, golfer 2 could hit 20 brand B balls in 
cool weather, and so on. You can probably see the downside of this design. Brand A might 
come out the longest ball just because the golfers assigned to brand A have good days. 
Therefore, if the consumer testing company decides to use human golfers, it should spread 
them evenly among brands and weather conditions. For example, it could employ 10 golf-
ers to hit two balls of each brand in each of the weather conditions. Even here, however, 
the use of different golfers introduces an unwanted source of variation: the different abili-
ties of the golfers (or how well they happen to be driving that day). Is the solution, then, 
to use a single golfer for all 300 balls? This has its own downside—namely, that the golfer 
might get tired in the process of hitting this many balls. Even if he hits the brands in ran-
dom order, the fatigue factor could play a role in the results.

These are the types of things designers of experiments must consider. They must 
attempt to eliminate as many unwanted sources of variation as possible, so that any dif-
ferences across the factor levels of interest can be attributed to these factors and not to 
extraneous factors. In this example, we suspect that the best option for the consumer test-
ing service is to employ a “mechanical” golf ball driving machine to hit all 300 balls. This 
should reduce the inevitable random variation that would occur by using human golfers. 
Still, there will be some random variation. Even a mechanical device, hitting the same 
brand under the same weather conditions, will not hit every drive exactly the same length.

Once the details of the experiment have been decided and the golf balls have been hit, 
we will have 300 observations (yardages) at various conditions. The usual way to enter the 
data in Excel®—and the only way the StatTools Two-Way ANOVA procedure will accept 
it—is in the stacked form shown in Figure 19.18. (See the file Golf Ball.xlsx.) There 
must be two categorical variables that represent the levels of the two factors (Brand and 
Temperature) and a measurement variable that represents the dependent variable (Yards). 
Although many rows are hidden in this figure, there are actually 300 rows of data, 20 for 

A

Brand Temperature

Cool

Cool

Cool

Cool

Cool

Cool

Cool

Cool

Cool

Cool

214.3

Yards

208.0

208.8

216.7

212.1

219.2

220.6

229.1

204.0

215.3

A

A

A

A

A

A

A

A

A

A

1

2

3

4

5

6

7

8

9

10

11

B CFigure 19.18
Data for Golf Ball 
Example

Data for StatTool’s Two-
Way ANOVA procedure 
cannot be in unstacked 
form.  Also, a balanced 
design must be used.
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each of the 15 combinations of Brand and Temperature. Again, this is a balanced design, 
which is what StatTools expects for its two-way ANOVA procedure. (StatTools will issue 
an error message if it finds an unbalanced design, that is, unequal numbers of observations 
at the various treatment level combinations.)

Now that we have the data, what can we learn from them? In fact, which questions 
should we ask? Here it helps to look at a table of sample means, such as in Figure 19.19. (This 
table is part of the output from the StatTools Two-Way ANOVA procedure. Alternatively, it 
can be obtained easily with an Excel pivot table, as we did here.4) Prompted by this table, 
here are some questions we might ask.

 ■ Looking at column E, do any brands average significantly more yards than any others 
(where these averages are averages over all temperatures)?

 ■ Looking at row 10, do average yardages differ significantly across temperatures (where 
these averages are across all brands)?

 ■ Looking at the columns in the range B5:D9, do differences among averages of brands 
depend on temperature? For example, does one brand dominate in cool weather and 
another in warm weather?

 ■ Looking at the rows in the range B5:D9, do differences among averages of tempera-
tures depend on brand? For example, are some brands very sensitive to changes in 
temperature, while others are not?

A
3
4
5
6
7
8
9

10

B C D E

B
C
D
E
Grand Total 222.1

224.8
215.0
228.0
224.1
218.8 236.5

245.1
242.7
237.6
255.7
243.5

258.4
258.3
263.0
256.1
270.9
261.4

237.9
242.5
244.6
236.2
250.5
242.3

A

Average of Yards
Brand

Temperature
Cool Mild Warm Grand Total

Figure 19.19
Table of Sample 
Means in Golf Ball 
Example

4Note that the default label Excel uses in cells L10 and P4 is Grand Total—and you cannot change them. However, 
they are really “grand averages.”

It is useful to characterize the type of information these questions are seeking. 
Question 1 is asking about the main effect of the brand factor. If we ignore the temperature 
(by averaging over the various levels of it), do some brands tend to go farther than some 
others? This is obviously a key question for the study. Question 2 is also asking about a 
main effect, the main effect of the temperature factor. If we ignore the brand (by averag-
ing over all brands), do balls tend to go farther in some temperatures than others? The 
answer to this question is obvious to golfers. They all know that balls compress better, and 
hence go farther, in warm temperatures than in cool temperatures. Therefore, this is not a 
key question for the study, although we would certainly expect the study to confirm what 
experience tells us.

Main effects indicate whether there are different means for treatment levels of one 
factor when averaged over the levels of the other factor.

Questions 3 and 4 are asking about interactions between the two factors. These inter-
actions are often the most interesting results of a two-way study. Essentially, interactions 
(if there are any) provide information that could not be guessed by knowing the main 
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Interactions indicate patterns of differences in means that could not be guessed from 
the main effects alone. They exist when the effect of one factor on the dependent 
variable depends on the level of the other factor.

effects alone. In this example, interactions are patterns of the averages in the range B5:D9 
that could not be guessed by looking only at the “main effect” averages in column E and 
row 10. Specifically, the order of brands in column E, from largest to smallest average 
yardages, is E, C, B, A, D. If there were no interactions at all, this ordering would hold 
at each temperature. For these data, it is close. At the cool temperature, the ordering is C, 
E, B, A, D; for mild, it is E, B, C, D, A; for warm, it is E, C, A, B, D. Actually, having no 
interactions implies even more than the preservation of these rankings. It implies that the 
difference between any two brands’ averages is the same at any of the three temperature 
levels. For example, the differences between brands E and D at the three temperatures are 
224.8 − 215.0 = 9.8, 255.7 − 237.6 = 18.1, and 270.9 − 256.1 = 14.8. If there were no 
interactions at all, these three differences would be equal.

The concept of interaction is much easier to understand by looking at graphs. The 
graphs in Figures 19.20 and 19.21, which are both outputs from the StatTools Two-Way 
ANOVA procedure, represent two ways of looking at the pattern of averages for differ-
ent combinations of brand and temperature—that is, the averages in the range B5:D9 of 
Figure 19.19. The first of these shows a line for each brand, where each point on the line 
corresponds to a different temperature. The second shows the same information with the 
roles of brand and temperature reversed. Neither graph is “better” than the other; they sim-
ply show the same data from different perspectives. The key to either is whether the lines 
are parallel. If they are, then there are no interactions—the effect of one factor on average 
yardage is the same regardless of the level of the other factor. The more nonparallel they 
are, however, the stronger the interactions are. The lines in either of these graphs are not 
exactly parallel, but they are nearly so. This implies that there is very little interaction 
between brand and temperature in these data.

280.00

270.00

260.00

250.00

240.00

230.00

220.00

210.00

200.00
Cool Mild

Interac!on Plot: Brand by Temperature

Warm

A

B

C

D

E

Figure 19.20
One View of 
Interactions in Golf 
Ball Example

Remember that the 
interactions become 
stronger as the lines 
in either of these 
graphs become more 
nonparallel.
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In general, interactions can be of several types. We show two contrasting types in 
Figures 19.22 and 19.23. (For simplification, these focus on two brands only. They are 
based on different data from those used in the Golf Ball.xlsx file.) In Figure 19.22, brand 
A dominates at all temperatures. However, there is an interaction because the difference 
between brands increases as temperature increases. In this situation the interaction effect 
is interesting, but the main effect of brand—brand A is better when averaged over all 
 temperatures—is also interesting. The situation is quite different in Figure 19.23, where 
there is a “crossover.” Brand A is somewhat better at cool temperatures, but brand B is 
better at mild and warm temperatures. In this case the interaction is the most interesting 
finding, and the main effect of brand is much less interesting. In simple terms, if you are 
a golfer, you would buy brand A in cool temperatures and brand B otherwise, and you 
wouldn’t care very much which brand is better when averaged over all temperatures.

Interac!on Plot: Temperature by Brand
280.00

270.00

260.00

250.00

240.00

230.00

220.00

210.00

200.00
A B C D E

Cool
Mild
Warm

Figure 19.21
Another View of 
Interactions in Golf 
Ball Example

300

275

250

225

200
Cool Mild Warm

A
B

Figure 19.22
One Possible 
Pattern of 
Interactions
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For these reasons, we check first for interactions in a two-way design. If there are 
significant interactions, then the main effects might not be as interesting. However, if there 
are no significant interactions, then main effects generally become more important.

Summing up what we have seen so far, main effects are differences in averages across 
the levels on one factor, where these averages are averages over all levels of the other fac-
tor. In a table of sample means, such as in Figure 19.19, we can check for main effects by 
looking at the averages in the “Grand Total” column and row. In contrast, the interactions 
are patterns of averages in the main body of the table and are best shown graphically, as 
in Figures 19.20 and 19.21. They indicate whether the effect of one factor depends on the 
level of the other factor.

The next question is whether the main effects and interactions we see in a table of 
sample means are statistically significant. As in one-way ANOVA, this is answered by 
an ANOVA table. However, instead of having just two sources of variation, within and 
between, as in one-way ANOVA, there are now four sources of variation: one for the main 
effect of each factor, one for interactions, and one for variation within treatment level com-
binations. For the golf ball data, two-way ANOVA separates the total variation across all 
300 observations into four sources. First, there is variation due to different brands produc-
ing different average yardages. Second, there is variation due to different average yard-
ages at different temperatures. Third, there is variation due to the interactions we saw in 
the interaction graphs. Finally, there is the same type of “within” variation as in one-way 
ANOVA. This is the variation that occurs because yardages for the 20 balls of the same 
brand hit at the same temperature are not all identical. (This within variation is usually 
called the “error” variation in statistical software packages.)

Two-way ANOVA collects this information about the different sources of variation, 
using fairly complex formulas, in an ANOVA table as shown in Figure 19.24. [This is the 
output from StatTools, by selecting Two-Way ANOVA from the Statistical Inference group 
in StatTools, selecting Brand and Temperature as the categorical (C1 and C2) variables and 
Yards as the measurement (Val) variable. The output includes tables of sample sizes, sam-
ple means, and sample standard deviations, as well as the ANOVA table.] The four sources 
of  variation appear in rows 37–40. Rows 37 and 38 are for the main effects of brand and 
temperature, row 39 is for interactions, and row 40 is for the within (error) variation. Each 
source has a sum of squares and a degrees of freedom. Also, each has a mean square, the 
ratio of the sum of squares to the degrees of freedom. Finally, the first three sources have 
an F-ratio and an associated p-value, where each F-ratio is the ratio of the mean square in 
that row to the mean square error in cell D40.

300

275

250

225

200
Cool Mild Warm

A
B

Figure 19.23
Another Possible 
Pattern of 
Interactions

Main effects are 
typically less important 
when interactions exist. 
Therefore, it is common 
to check for significant 
interactions first.
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We test whether main effects or interactions are statistically significant in the 
usual way—by examining p-values. Specifically, we claim statistical significance if the 
 corresponding p-value is sufficiently small, less than 0.05, say. Looking first at the inter-
actions, the p-value is about 0.03, which says that the lines in the interaction graphs are 
significantly nonparallel, at least at the 5% significance level. We might dispute whether 
this nonparallelism is practically significant, but there is statistical evidence that at least 
some interaction between brand and temperature exists. The two p-values for the main 
effects in cells F37 and F38 are practically 0, meaning that there are differences across 
brands and across temperatures. Of course, the main effect of temperature was a foregone 
 conclusion—we already knew that balls do not go as far in cold temperatures—but the 
main effect of brand is more interesting. According to the evidence, some brands definitely 
go farther, on average, than some of the others. ■

A
7 Two-Way ANOVA for Yards by Brand and Temperature
8 ANOVA Sample sizes
9 A

Cool Mild Warm Totals

Cool Mild Warm Totals

20
20
20
20
20

100 100 100

20
20
20
20
20

20
20
20
20
20

60
60
60
60
60

10 B
11 C
12 D
13 E
14 Totals

Totals

Balanced TRUE15
16
17

ANOVA Sample Means18
A 218.82 236.45 258.44 237.9019
B 224.15 245.13 258.27 242.5220
C 228.00 242.72 263.04 244.5821
D 215.00 237.62 256.11 236.2422
E 224.79 255.75 270.94 250.4923

24 222.15 243.53 261.36
25
26
27
28
29
30
31

TwoWay ANOVA Table

32
33
34
35
36
37 Brand

Temperature 77086.00
7702.44

38
39 Interac!on 1999.97
40 Error 33329.13
41 Total 120117.53

2
4

8
285
299

38543.00
1925.61 16.47

329.58
2.14

<0.0001
<0.0001

0.0325250.00
116.94

B C D E F

Cool Mild Warm Totals

Totals

ANOVA Sample Std Dev
A 10.90 8.83 11.01 19.22
B 11.70 9.80 8.93 17.36
C 10.85 14.25 7.08 18.15
D 13.64 10.18 12.13 20.69
E 10.67 10.96 9.05 21.84

12.28 12.78 10.98

Sum of Degrees of Mean
Squares Squares

F-Ra!o p-Value
Freedom

Figure 19.24
StatTools Two-Way 
ANOVA Output for 
Golf Ball Data

ANOVA Tip: Unbalanced Designs
StatTools can handle only balanced two-way designs. Unbalanced designs, where sample sizes 
are not equal across treatment level combinations, are mathematically more difficult to analyze. 
The best way to do this is with regression with dummy variables, similar to the method discussed 
in Section 19-3. You can find an excellent discussion of this issue in Chapters 23 and 24 of the 
textbook by Kutner et al. (2005).
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19-5a Confidence Intervals for Contrasts
If we find that main effects and/or interactions are significant, then we will probably want to 
check which factor levels, or factor level combinations, produce significantly larger means 
than others. Recall that the StatTools One-Way ANOVA procedure provides confidence 
intervals for differences between each pair of means. This same option is not provided in 
two-way ANOVA because there would typically be too much output to digest, and much 
of it would probably not be very useful. Given the purposes of any particular study, there 
are usually a few comparisons you would like to make, and this can be done fairly easily 
after the StatTools Two-Way ANOVA procedure has been run. We illustrate the methods 
in this section.

First, recall that a contrast is any difference between weighted averages of means. 
An example of a simple contrast is the difference between two means, such as μ3 − μ1. 
You would study this contrast if you were interested in whether μ3 is different from μ1. An 
example of a more complex contrast is (μ1 + μ2)/2 − (μ3 + μ4 + μ5)/3. You would study 
this contrast if you were interested in whether the average of μ1 and μ2 is different from 
the average of μ3, μ4, and μ5. Note that the coefficients of these contrasts sum to 0. For 
 example, (1⁄2 + 1⁄2) – (1⁄3 + 1⁄3 + 1⁄3) = 0 . All contrasts have this property. Obviously, many 
contrasts could be constructed. The ones you construct for any particular study depend 
entirely on what you are interested in. You might be interested in several simple contrasts 
or one or two more complex contrasts.

A contrast is any linear combination of means (sum of coefficients multiplied by 
means) such that the sum of the coefficients is 0. It is typically used to compare one 
weighted average of means to another.

Once StatTools has been used to run a two-way ANOVA, you can then form confi-
dence intervals for any contrasts of interest. The general form of the confidence interval 
is given by Expression (19.5). Here, the point estimate of the contrast is formed by sub-
stituting sample means for the μ’s in the contrast, MSW is the mean square error from the 
ANOVA table, nj is the sample size corresponding to any particular mean in the contrast, 
cj is the coefficient of the corresponding μj in the contrast, and the summation is over all 
terms in the contrast.

The StatTools Two-Way 
ANOVA procedure finds 
MSW for this formula. 
However, you must 
calculate the other 
ingredients with Excel 
formulas.

Confidence Interval for Contrast

 Point estimate of contrast ± multiplier ×
Å

MSWa
j

c2
j /nj  (19.5)

As an example, if the contrast is a simple difference between means such as μ1 − μ4, 
then the point estimate is Y1 − Y4, and the cj’s are c1 = 1 and c4 = −1, so that c2

1 = 1 and 
c2

4 = 1. Therefore, the confidence interval becomes

Y1 − Y4 ± multiplier × "MSW(1/n1 + 1/n4)

which is the same as the formula given in Sections 19-2 and 19-4 for one-way ANOVA.
As in one-way ANOVA, the multiplier in the confidence interval can be chosen in 

several ways to handle the multiple comparison problem appropriately. We indicate typical 
possibilities in the following continuation of the golf ball example.
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 E X A M P L E  19.3 DRIVING DISTANCES FOR GOLF BALL BRANDS (CONTINUED)

One golf ball retail shop would like to test the claims that (1) brand C beats the average 
of the other four brands in cool weather and (2) brand E beats the average of the other 

four brands when it is not cool. Are these two claims supported by the data in the Golf 
Ball.xlsx file?

Objective To form and test contrasts for the golf ball data, and to interpret the results.

Solution
Let μC,W be the mean yardage for brand C balls hit in warm weather, and define similar 
means for the other brands and temperatures. Then the first claim concerns the contrast

μC,C − μA,C + μB,C + μD,C + μE,C

4

and the second concerns the contrast

   
μE,M + μE,W

2
−

μA,M + μA,W

2
+

μB,M + μB,W

2
+

μC,M + μC,W

2
+

μD,M + μD,W

2
4

=
μE,M + μE,W

2
−

μA,M + μA,W + μB,M + μB,W + μC,M + μC,W + μD,M + μD,W

8

(Note in this second contrast how we average over the mild and warm temperatures. This is 
because the second claim just specifies “not cool.”) A good way to handle the calculations 
in Excel is illustrated in Figure 19.25. For either contrast, you first record the coefficients 
of the means in the contrast. These appear in the ranges H13:J17 and H26:J30. (Note that 
the sum of the values in each of these ranges is 0. This is required for contrasts, as we 
discussed previously.) Then the point estimate of a contrast is the SUMPRODUCT of the 
sample means and these coefficients. For example, you calculate the point estimate of the 
first contrast in cell H19 with the formula

=SUMPRODUCT(H13:J17,B19:D23)

The multiplier for these confidence intervals is always a thorny issue, but most stat-
isticians agree that if only a small number of confidence intervals are being formed, as in 
this example, then you can use the usual t-value, where the degrees of freedom is the one 
corresponding to the error (within) variation. Therefore, the multiplier for each contrast is 
approximately 2, found in cell H18 with the formula

=TINV(1-H8,C40)

Then because each sample size is 20 (the value in cell B9), you can find the lower and 
upper limits of the confidence intervals from Expression (19.5). For example, the confi-
dence interval for the first contrast is found with the formulas

=H19-H18*SQRT(D40*SUMSQ(H13:J17)/B9)

and

=H19+H18*SQRT(D40*SUMSQ(H13:J17)/B9)

in cells H20 and H21.

Remember that Excel’s 
SUMSQ function sums 
the squares of the 
values in a given range.
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Figure 19.25
Confidence 
Intervals for 
Contrasts in Golf 
Ball Example

G
7 Confidence intervals for contrasts

Confidence level8
9

95%

Cool Mild Warm

10
11
12
13
14

Mul!plier 1.968
Point es!mate 7.31
Lower limit 1.99
Upper limit 12.63

15
16
17
18

A

19

B

20

C

21

D

22

E

23
24
25
26
27
28
29
30
31
32
33
34

H I J K

Comparing brand C against average of others in cool weather

Comparing brand E against average of others in non-cool weather

Matrix of coefficients

Matrix of coefficients

–0.25 0
0
0
0
0

0
0
0
0
0

–0.25

–0.25
–0.25

1

Cool Mild Warm

Mul!plier 1.968
Point es!mate 13.62
Lower limit 9.86
Upper limit 17.38

A
B
C
D
E

–0.1250
0
0
0
0

–0.125
–0.125
–0.125

0.5

–0.125
–0.125
–0.125
–0.125

0.5

As you can see, both claims are supported. The confidence intervals for the two con-
trasts extend from 1.99 to 12.63 and from 9.86 to 17.38—all positive yardages. It looks 
like brand C beats the average of the competition by at least 1.99 yards in cool weather, 
and brand E beats the average of the competition by at least 9.86 yards in weather that is 
not cool. ■

If you want to examine a lot of contrasts, then you should use one of the other con-
fidence interval methods discussed in Section 19-4, the two preferred methods being the 
Bonferroni and Scheffé methods. The only difference is in the multiplier used. For the 
Bonferroni method, suppose you want to form k confidence intervals. Then rather than 
using the t-value that has probability α in the tails, you should use the t-value that has 
probability α/k in the tails. For example, if you want to form k = 2 confidence intervals at 
the 95% confidence level, as above, then α = 0.05 and α/k = 0.025, so you put probability 
0.025 in the tails rather than 0.05. The effect is that each of the two confidence intervals is 
constructed separately at the 97.5% level. The multiplier in the golf ball example (cell H18 
in Figure 19.25) would use the formula

=TINV((1-H8)/2, C40)

which evaluates to 2.253. This larger multiplier would result in slightly wider confidence 
intervals.

The Scheffé method is the most “conservative” method in the sense that it generally 
produces the widest confidence intervals. However, the relevant multiplier for this method 
is rather complex and will not be discussed here.
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19-5b Assumptions of Two-Way ANOVA
The assumptions for the two-way ANOVA procedure are basically the same as for one-way 
ANOVA. If we focus on any particular combination of factor levels, such as brand A golf 
balls hit in cool weather, then we assume that (1) the distribution of values (yardages) for 
this combination is normal, and (2) the variance of values at this combination is the same 
as at any other combination. It is always wise to check for at least gross violations of these 
assumptions, especially the equal-variance assumption. The StatTools output provides an 
informal check by providing a table of standard deviations for the factor level combina-
tions. For the golf ball example, this table is shown in Figure 19.26. Obviously, these stand-
ard deviations are not all exactly equal, but we would never expect exact equality in any 
real study. Because these standard deviations are of similar magnitude, there is no reason 
to worry about the equal-variance assumption for these data. Besides, the equal-variance 
assumption is less important when the design is balanced, as this one is.

P R O B L E M S

Level A
18. Suppose a company that sells residential carpet 

cleaning equipment wants to judge the sales 
effectiveness of two factors: factor A, the type of 
sales presentation used by its salespeople, and factor 
B, the type of previous experience or training its 
salespeople have had in selling this type of equipment. 
Specifically, there are two types of presentations the 
company wishes to test. These two levels of factor A 
are the “hard-sell” approach, level 1, and the more 
relaxed “soft-sell” approach, level 2. The company also 
differentiates among four levels of past experience/
training. These levels of factor B are labeled 1 through 
4 and are defined as follows: (1) no past experience 
as a salesperson and no formal training in how to be a 
salesperson, (2) no past experience and some formal 
training, (3) some past experience and no formal 

training, and (4) some past experience and some formal 
training. 

To see how presentation and experience/training 
affect sales, the company runs an experiment with 
80 of its recently hired salespeople, 20 of whom 
fall into each of the four experience/training levels 
described above. Within each group of 20 salespeople 
at a given experience/training level, 10 are told to use 
a hard-sell approach and the other 10 are told to use 
a soft-sell approach. Of course, the hard-sellers and 
soft-sellers are instructed very carefully in the types 
of presentation they are supposed to use. During a 
4-month period, the number of sales for each of the 
80 salespeople is recorded. The data are listed in the 
file P19_18.xlsx. The company wishes to infer from 
these data whether the different presentations and 
experience/training backgrounds cause significant 
differences in sales.

A
27
28
29
30
31
32
33

B C D E
Cool Mild Warm Totals

Totals

ANOVA Sample Std Dev
A 10.90 8.83 11.01 19.22
B 11.70 9.80 8.93 17.36
C 10.85 14.25 7.08 18.15
D 13.64 10.18 12.13 20.69
E 10.67 10.96 9.05 21.84

12.28 12.78 10.98

Figure 19.26
Checking the 
Equal-Variance 
Assumption

As we demonstrated in Example 19.2, however, the log transformation is often useful 
when variances are far from equal across factor level combinations. At least, this transfor-
mation is often worth trying. If it works—that is, if it tends to equalize the variances and 
maybe even make the data more normal—then two-way ANOVA can be carried out on the 
log-transformed data exactly as we demonstrated in Example 19.2.
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a. Assess the main effect of the presentation approach 
factor upon sales.

b. Assess the main effect of the previous experience 
and training factor upon sales.

c. Do you find evidence of significant interactions 
between the two factors in this case? Explain.

19. A study is performed on a sample of residential homes 
to discover whether the size of the monthly heating 
bill depends on the type of heat or the type of home. In 
particular, three types of heat are examined: electric, 
natural gas, and oil. Also, all homes are classified into 
two types: those on a single level and those with at 
least two stories. In a single community, ten houses 
of each type, using each type of heat, are located and 
their heating bills for February of the past year are 
observed. These data are listed in the file P19_19.xlsx. 
Assume that the homes in this study are approximately 
equivalent in terms of overall square footage and level 
of insulation.
a. Do you find evidence of a significant main effect for 

the heat type factor? Explain.
b. Do you find evidence of a significant main effect for 

the home type factor? Explain.
c. Do you find evidence of significant interactions 

between the two factors? Explain.

20. An automobile dealer would like to know 
whether the amount of money spent on a new 
automobile depends on (1) the age of the buyer, 
and (2) whether the buyer is accompanied by 
his or her spouse. Data on 60 recent new vehicle 
purchases, including purchase prices, are listed in 
the file P19_20.xlsx. Test for any significant main 

effects and interactions at the 10% level, and briefly 
summarize your findings.

Level B
21. Consider again the two-way ANOVA hypothesis test 

described in Problem 18. Construct a 95% confidence 
interval for each possible pairwise difference between 
means. Interpret your results. Recall that the relevant 
data are listed in the file P19_18.xlsx.

22. Consider again the two-way ANOVA hypothesis test 
described in Problem 19. Recall that the relevant data 
are listed in the file P19_19.xlsx.
a. A natural gas supplier claims that homes which use 

gas heat generate an average February heating bill 
that is less than the average February heating bill of 
all other homes that use electricity or heating oil. Is 
this claim supported by the given data? Explain.

b. A heating oil supplier claims that homes that use 
heating oil generate an average February heating bill 
that is less than the average February heating bill of 
all other homes that use electricity or natural gas. Is 
this claim supported by the given data? Explain.

23. The file P19_23.xlsx lists data for a two-way ANOVA 
in which each of the two factors has two levels. Note 
that there are 25 observations for each of the four 
treatment combinations.
a. Are the assumptions of two-way ANOVA met for 

these data? If not, do what you can to correct any 
problem(s).

b. Test for any significant main effects and interactions 
at the 5% level. Briefly summarize your results.

19-6 MORE ABOUT EXPERIMENTAL DESIGN
The purpose of this chapter is to introduce key ideas and analysis techniques for the most 
common (and simple) single-factor and multi-factor models. In each of these models, we 
analyze how a dependent variable varies when one or more factors are varied at several lev-
els. Although the same analysis can be used in observational studies or in designed exper-
iments, we focus now on designed experiments. This is particularly important because 
many businesses are just now beginning to see the potential of designed experiments for 
reducing cost, increasing profit, and producing higher-quality items. (Examples of this 
were provided in the introductory vignette to this chapter.)

We can break up the topic of experimental design into two parts: (1) the actual design 
of the experiment, and (2) the analysis of the resulting data. In this section we will expand 
on these, mostly on the design but to some extent on the analysis, just to provide a sense of 
what is possible. Specifically, we will discuss some key issues in experimental design and 
some of the more popular designs. However, the discussion in this section is by no means 
complete. Many books have been written about experimental design and the required sta-
tistical analysis [see Berger and Maurer (2002), Schmidt and Launsby (1994), and DeVor 
et al. (1992), for example, for very readable accounts of the topic], so we can barely scratch 
the surface.
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Experimental design, as opposed to the statistical methods for analyzing the result-
ing data, has to do with the selection of factors, the choice of the treatment levels, 
the way experimental units are assigned to the treatment level combinations, and the 
conditions under which the experiment is run. These decisions must be made before 
the experiment is performed, and they should be made very carefully. Experiments are 
typically costly and time-consuming, so the experiment should be designed (and per-
formed) in a way that will provide the most useful information possible. Unfortunately, 
proper experimental design is by no means intuitive. We want the most for our money, 
but it is usually not clear how to achieve it. Therefore, a whole science of experimental 
design has developed through the years. We will summarize some of its most important 
results here.

19-6a Randomization
The purpose of most experiments is to see which of several factors have an effect on a 
dependent variable. The factors in question are chosen as those that are controllable and 
are most likely (among all possible factors) to have some effect. Often, however, there 
are “nuisance” factors that cannot be controlled, at least not directly. If nothing is done 
about these nuisance factors, they can possibly mask the effect of the “important” fac-
tors, so that we do not achieve the desired results. One important method for dealing with 
such nuisance factors is randomization, where we attempt to spread the levels of the nui-
sance  factors randomly to the various levels of the experimental factors. We illustrate this 
extremely important idea in Example 19.4.

Randomization is the process of randomly assigning experimental units so that 
nuisance factors are spread uniformly across treatment levels.

 E X A M P L E  19.4 TESTING FOR SHARPNESS IN INKJET PRINTERS

A computer magazine company regularly tests products from different manufacturers 
for differences in various aspects of quality. For its next issue, it would like to test 

sharpness of printed images across three popular brands of inkjet printers. It purchases 
one printer of each brand, prints several pages on each printer, and measures the sharpness 
of image on a 0–100 scale for each page. A subset of the data and the analysis appear in 
Figures 19.27 and 19.28. (See the file Printers.xlsx.) They indicate that printer A is best 
on average and C is worst. Why might these results be misleading?

Figure 19.27
Printer Data

A
1

2

3

4

5

6

28

29

30

31

B
Printer Brand

A

A

A
A

C

C

C

C

A

Sharpness

85

88

92
85

85

76

86

87

92
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Figure 19.28  Results from an Experiment Before Randomizing

A
7 One-Way ANOVA for Sharpness  by Printer Brand
8 ANOVA Summary
9 Total Sample Size

Sharpness (A)
Data Set #1

Sharpness (B)
Data Set #1

Sharpness (C)
Data Set #1

30
84.767
3.285

10.789
3

95.00%

10 Grand Mean
11 Pooled Std Dev
12 Pooled Variance
13 Number of Samples
14 Confidence Level
15
16
17 ANOVA Sample Stats
18 Sample Size 10 10 10
19 Sample Mean 88.800 83.700 81.800
20 Sample Std Dev 3.011 2.669 4.022
21 Sample Variance 9.067 7.122 16.178
22 Pooling Weight 0.3333 0.3333 0.3333
23
24
25
26
27
28
29
30
31

OneWay ANOVA Table

32
33
34

Between Varia!on
Within Varia!on 291.300

262.067

Total Varia!on 553.367
27
2

29
10.789

131.033 12.145 0.0002

B C D E F

Sum of
Squares

Degrees of
Freedom

Mean
Squares F-Ra!o p-Value

Confidence Interval Tests
Sharpness (A)-Sharpness (B)
Sharpness (A)-Sharpness (C)
Sharpness (B)-Sharpness (C)

7.000
5.100

1.900
3.35651367

1.45651367

–1.74348633
10.64348633

5.54348633

8.74348633

Difference
of Means

Tukey
UpperLower

Objective To use randomization of paper types to see whether differences in sharpness 
are really due to different brands of printers.

Solution
This is a single-factor design, where the single factor, brand of printer, is varied at three 
levels. Suppose, however, that there is another factor, type of paper, that is not the primary 
focus of the study but might affect the sharpness of image. For the sake of discussion, sup-
pose further that all type 1 paper is used in printer A, all type 2 paper is used in printer B, 
and all type 3 paper is used in printer C. Then it is very possible that the apparent effect of 
printer is really an effect of paper type. Specifically, it is possible that type 1 paper tends 
to produce the sharpest image, regardless of the printer used. We can’t know this for sure, 
but it is certainly possible given our (flawed) experimental design. The solution is to rand-
omize over paper type. For each sheet of paper to be printed by any printer, we randomly 
select a paper type. This will tend to even out the paper types across the printers. Then if 
the average sharpness of image from printer A is still higher than the averages from the 
other two brands, we will have more confidence that this is due to differences in printers, 
not types of paper. Note that it is not necessary to use equal numbers of sheets of each 
paper type in the experiment. For example, if paper type 1 is the most used paper type by 
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actual users, then we might use more of it in the experiment. The important point is that no 
printer is fed a much higher proportion of any paper type than any other printer.

We illustrate how this might be implemented with random numbers in Figure 19.29. 
Based on actual usage, suppose that approximately 50% of the paper used in the experi-
ment is of type 1, 35% is of type 2, and 15% is of type 3. This information is entered in col-
umns F and G. Then to randomize paper types across printers, we enter random numbers in 
column B with the RAND() function, enter the formula

=IF(B2<=$G$3,1,IF(B2<=$G$3+$G$4,2,3))

in cell C2, and copy down column C. Of course, Figure 19.29 shows only the experimen-
tal design. Now it is up to the company to run the experiment with the printers and paper 
types shown (one piece of paper per row), measure the sharpness levels, and perform the 
same statistical analysis as described in Section 19-2. That is, after we  randomize and 
collect the data, the analysis is the usual one-way ANOVA. This time, however, because 
we have randomized over paper types, we can be more confident that any observed 
 differences across printers are indeed due to the printers themselves and not differences 
in paper. ■

Figure 19.29
Experimental 
Design Using 
Randomization

19-6b Blocking
Randomization is one method for eliminating the effects of one or more nuisance factors. 
Another method is called blocking. Like randomization, blocking is extremely important 
and is used in many applications. Actually, you have already seen perhaps the simplest 
form of blocking in Chapters 8 and 9 in the discussion of the paired-sample procedure. In 
a study of differences between pretest and post-test performance scores, for example, each 
person is defined as a “block.” The idea is that pretest and post-test tend to be  correlated—
some people do well on both, whereas some do poorly on both—so by using a paired-
sample procedure, you “block out” the differences among people and are able to focus on 
the differences between the two tests.

There are many forms of blocking designs, but we will describe only the simplest: the 
randomized block design with a single experimental factor and a single blocking variable. 
Suppose there are T  treatment levels of the single factor and B blocks. Then you use T × B 
experimental units and assign T  of these to each block. If it is possible (or makes sense), 
you can also randomize the T  experimental units in any block to the T  treatment levels. We 
illustrate the typical setup in Example 19.5.

A
1 Printer Brand Sharpness Distribu!on of paper type
2 A
3 A

A
A
A
A
C
C
C
C
C

4
5
6
7

27
28
29
30
31

C D E F G HB
Random Number Paper Type

Type Pct
50%

15%
35%

0.487642251
0.721544637
0.404243214
0.647971901
0.752277178
0.036587599
0.715408714
0.598789252
0.221325535
0.974606651

0.00353146

1
2
1

1
2

2 3
2
1
2
2
1
3
1
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In a randomized block design, the experimental units are divided into several 
“similar” blocks. Then each experimental unit within a given block is randomly 
assigned a different treatment level.

 E X A M P L E  19.5 THE EFFECT OF SOAP DISPENSERS ON SOAP SALES

SoftSoap Company is introducing a new product into the market: liquid soap for wash-
ing hands. Four types of soap dispensers are being considered. SoftSoap has no idea 

which of these four dispensers will be perceived as the most attractive or easy to use, so it 
runs an experiment. It chooses eight supermarkets that have traditionally carried SoftSoap 
products, and it asks each supermarket to stock all four versions of its new product for a 
2-week test period. It records the number of items purchased of each type at each store 
during this period. (See the file Soap Sales.xlsx.) How might we describe (and analyze) 
this experiment?

Objective To use a blocking design with store as the blocking variable to see whether 
type of dispenser makes a difference in sales of liquid soap.

Solution
At first glance, this might look exactly like a one-way design as described in Section 19-2. 
There is a single factor, dispenser type, varied at four levels, and there are eight observa-
tions at each level. For example, we obtain a count of sales for dispenser type 1 at each of 
eight stores. However, it is very possible that the dependent variable, number of sales, is 
correlated with store. That is, some stores might sell a lot of each dispenser type, whereas 
others might not sell many of any dispenser type. (For example, stores in areas where there 
are a lot of manual labor jobs might sell a lot more hand soap than stores in a university 
area.) Therefore, we treat each store as a block, so that the experimental design appears as 
in Figures 19.30 and 19.31. Each treatment level (dispenser type) is assigned exactly once 
to each block (store). As a practical matter, if each dispenser type is stocked on a different 
shelf in the store, randomization could also be used, where each store is instructed to rand-
omize the order of dispenser types from top shelf to bottom shelf.

You can analyze these data essentially the same way you analyze a two-factor 
design, that is, with two-way ANOVA. There are two differences, one technical and one 
of inter-pretation. The technical difference is that because there is only one observa-
tion in each combination of treatment level and block, it is impossible to estimate an 

Figure 19.30
Soap Sales Data

A
1 Store Dispenser Sales

2 1

3 1

1

1

2

7

8

8

8

8

4

5

6

29

30

31

32

33

B C

68

82

94

72

72

70

65

77

80

81

1

2

3

4

1

4

1

2

3

4

As this example 
illustrates, the blocking 
variable—and even 
the decision whether 
to block—depends 
entirely on the specific 
problem.
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Figure 19.31  Randomized Block Design for Soap Example

A
7 Two-Way ANOVA for Sales by Store and Dispenser
8 ANOVA Sample sizes
9 1

1 2 3 4

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

8 8 8 8

Totals

4

4

4

4

4
4

4

4

10 2
11 3
12 4
13 5

6

7

8

14

Totals

Balanced TRUE

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

TwoWay ANOVA Table

32

33

34

35

36

37

Store

Dispenser 1617.00

4313.50

38

39

Error 729.00

40

41

Total 6659.50

3

7

21

31

539.00

616.21 17.75

15.53

<0.0001

<0.0001

34.71

B C D E F

42

43

44

45

46

47

48

49

ANOVA Sample Means

1

1 2 3 4

68.00
72.00
70.00
49.00
66.00
48.00
57.00
65.00

82.00
96.00
73.00
56.00
84.00
54.00
75.00
77.00

94.00
104.00
76.00
60.00
94.00
56.00
81.00
80.00

72.00
78.00
59.00
61.00
75.00
43.00
70.00
81.00

61.88 74.63 80.63 67.38

Totals

79.00
87.50
69.50
56.50
79.75
50.25
70.75
75.75

2
3
4
5
6
7
8
Totals

ANOVA Sample Std Dev
1

1 2 3 4

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

9.37 14.04 16.72 12.48

Totals

11.60
15.00
7.42
5.45

12.01
5.91

10.21
7.37

2

3

4

5

6

7

8
Totals

Sum of Degrees of Mean

Squares Squares
F-Ra!o p-Value

Freedom

interaction effect and a “within” error variance simultaneously. Therefore, we assume 
there are no important interaction effects between treatment levels and blocks, and we 
attribute all variation other than that from main effects to error variation. The output is 
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shown in Figure 19.31. To obtain this output, use the StatTools Two-Way ANOVA proce-
dure, with Store and Dispenser as the two categorical variables. Because there is only one 
observation per store/dispenser combination, the ANOVA table has no Interaction row. 
Nevertheless, it still provides interaction charts, one of which appears in Figure 19.32, 
to check for the no-interaction assumption. If there were no interactions, the lines in this 
chart (one for each store) would be parallel. Although these lines are not exactly paral-
lel, it appears that the effect of dispenser type is approximately the same at each store. 
Therefore, the no-interaction assumption appears justified.

Figure 19.32
Interaction Chart 
for Soap Example

Interac!on Plot: Store by Dispenser
120.00

100.00

80.00

60.00

40.00

20.00

0.00
1 2 3 4

1
2
3
4
5
6
7
8

There are two F-values and corresponding p-values in the ANOVA table in 
Figure 19.31. The one in row 47 is for the main effect of dispenser type, whereas the one 
in row 46 is for the main effect of store. The former is of more interest because this is the 
focus of the experiment. Its p-value is essentially 0, meaning that there are significant 
differences across dispenser types. In fact, judging by the sample means, the ranking of 
dispenser types in decreasing order is 3, 2, 4, 1, and there is a considerable gap between 
each of these. If SoftSoap had to market only one dispenser type, it would almost certainly 
select type 3. The p-value for the main effect of store is also essentially 0, which means 
that the stores differ significantly with respect to average sales. This is not as interesting a 
finding—in fact, we use a block design precisely because we suspect such an effect—but it 
does confirm that a block design is a good idea.

We can also confirm that blocking was useful by running a one-way ANOVA on 
the data, using Dispenser as the single factor and ignoring Store. The results appear in 
Figure 19.33. The differences across dispenser type are still significant at the 5% level (the 
p-value is still less than 0.05), but they are not as significant as when a blocking variable 
is used. By comparing the ANOVA tables in Figures 19.31 and 19.33, you can see that 
the error (within) sum of squares in the latter, 5042.5, is split into two parts in the former: 
the block sum of squares, 4313.5, and the error sum of squares, 729. By having a lower 
error sum of squares, you obtain a more powerful test for dispenser differences. The point 
is that when differences across stores are ignored, they tend to mask the differences across 
dispenser types.
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Blocking is one of the most powerful methods in experimental design. It allows you to 
“control” for a variable, such as store, that is not of primary interest but could introduce an 
unwanted source of variation. Experimental designers should always be on the lookout for 
possible blocking variables. They generally result in more powerful tests. ■

A
7 One-Way Anova for Sales  by Dispenser
8 ANOVA Summary
9 Total Sample Size

Sales (1)
Data Set #1

Sales (2)
Data Set #1

Sales (3)
Data Set #1

32

71.13

13.42

180.09

4

95.00%

10 Grand Mean
11 Pooled Std Dev
12 Pooled Variance
13 Number of Samples
14 Confidence Level
15

16

17 ANOVA Sample Stats
18 Sample Size 8 8 8

19 Sample Mean 61.88 74.63 80.63

20 Sample Std Dev 9.37 14.04 16.72

21 Sample Variance 87.84 197.13 279.70

22 Pooling Weight 0.2500 0.2500 0.2500

Sales (4)
Data Set #1

8

67.38

12.48

155.70

0.2500

23

24

25

26

27

28

OneWay ANOVA Table
Between Varia!on

Within Varia!on 5042.50

1617.00

Total Varia!on 6659.50

28

3

31

180.09

539.00 2.99 0.0477

B C D E F

Sum of
Squares

Degrees of
Freedom

Mean
Squares F-Ra!o p-Value

Figure 19.33  Results for Soap Example Using One-Way ANOVA

19-6c Incomplete Designs
Recall that the two-factor designs discussed in Section 19-5 are called full factorial designs. 
In a full factorial design you obtain one or more observations for each combination of treat-
ment levels. For example, if there are two factors with 5 and 7 treatment levels, respectively, 
then you replicate the experiment at each of the 5 × 7 = 35 treatment level combinations. 
If there are three factors with 3, 5, and 7 treatment levels, respectively, then you replicate at 
each of the 3 × 5 × 7 = 105 combinations. By running an experiment in this way, you can 
estimate all main effects and interactions. A full factorial design is the preferred way to run 
an experiment from a statistical point of view, but it can be very expensive, even infeasible, 
if there are more than a few factors.

In industrial settings, there are often a large number of input factors that can be varied 
to produce a product. (Think, for example, of the number of factors that might be varied 
in an attempt to produce a car door that doesn’t rattle.) Each of these factors might have 
a main effect on some dependent variable of interest, and there might also be important 
interactions between input factors. The question is how to design an experiment so that you 
get as much useful information as possible and stay within budget (either time or money). 
To get an idea of the problem, suppose there are 12 input factors. Even if you use only two 
treatment levels (“low” and “high”) for each factor, there are 212 = 4096 treatment level 
combinations in a full factorial design—probably many more than could be tested.
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Because this is very common in real applications, statisticians have devised incomplete, 
or fractional factorial, designs that test only a fraction of the possible treatment level 
combinations. Obviously, something is lost by not gaining information on all of the pos-
sible combinations. Specifically, different effects are confounded, which means that they 
cannot be estimated independently. As an example, the main effect of factor D might be 
confounded with the three-way interaction effect of factors A, B, and C. In this case it is 
impossible to tell, because of the design, whether a particular set of observed differences is 
due to factor D or to the interaction of factors A, B, and C. You would probably conclude 
that the differences are due to factor D, simply because three-way interaction effects are 
typically not very important, but you cannot be absolutely sure.

This is a fairly difficult topic, and we will not be able to cover it in much detail. 
However, just to give you a taste of what is involved, we illustrate a “half-fractional” design 
with four factors, each at two levels, in Figure 19.34. (See the file Fractional Design.xlsx.) 
If this were a full factorial design, there would be 24 = 16 combinations of treatment levels. 
The “half-fractional” design means that only half, or eight, of these are used. When using 
only two levels for each factor, it is customary to label the lower level with a −1 and the 
higher level with a +1. Therefore, each row in the figure represents one of eight combina-
tions of the factor levels. For example, the first row uses the higher level of each factor. 
(Then when implementing the experiment, several experimental units would be assigned to 
each combination, so that there would be several observations per row.)

A
1 Half-factorial design with 4 factors

2

3 A

1

1

1

1

–1

–1

–1

–1

B

1

1

–1

–1

1

1

–1

–1

C

1

–1

1

–1

1

–1

1

–1

D

1

–1

–1

1

–1

1

1

–1

4

5

6

7

8

9

10

11

B C DFigure 19.34
A Half-Fractional 
Design with Four 
Factors

To see how the confounding works, it is useful to create new columns by multiplying 
the appropriate original A–D columns. For example, the AC column is the product, row by 
row, of the A and C columns. As in usual algebra, the result is +1 if there are an even num-
ber of −1’s, and −1 if there are an odd number of −1’s. The results appear in Figure 19.35. 
Note that there is now a column for each possible two-way and three-way interaction. If 
you compare these columns, you will notice that they come in pairs. For example, the A 
column has exactly the same pattern as the BCD column, the AB column has the same pat-
tern as the CD column, and so on. When two columns are identical, we say that one is the 
alias of the other. The practical impact is that if two effects are aliases of one another, it is 
impossible to estimate their separate effects. Therefore, we try to design the experiment 
so that only one of these is likely to be important and the other is likely to be insignifi-
cant. In this particular design, each main effect (single letter) is aliased with a three-way 
interaction—A with BCD, B with ACD, and so on. If three-way interactions are unlikely to 
be important, then any significant findings can be attributed to main effects, not three-way 
interactions. But note that the two-way interactions are confounded with each other—AB 
with CD, AC with BD, and AD with BC. It will probably be difficult to unravel these.
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As we have indicated, there is a whole science devoted to creating incomplete designs 
such as the one in Figure 19.34, and to analyzing the resulting data. [We again refer to 
Schmidt and Launsby (1994) and DeVor et al. (1992) for introductory accounts of the topic.] 
The usual approach, especially when there are a large number of potentially important input 
factors, is to run a highly fractional experiment (a small fraction of all possible treatment level 
combinations) to “screen” for the relatively few factors that have important effects. Having 
found these, a more detailed experiment, perhaps even a full factorial experiment, can be run 
to investigate the few important factors more fully. As the introductory vignette to this chapter 
explains, the results are often very impressive. These experiments can lead to lower costs, 
higher sales, higher reliability, and higher customer satisfaction—in short, to better products.

A
1 Half-factorial design with 4 factors

2

3 A

1

1

1

1

–1

–1

–1

–1

B

1

1

–1

–1

1

1

–1

–1

C

1

–1

1

–1

1

–1

1

–1

D

1

–1

–1

1

–1

1

1

–1

AB

1

1

–1

–1

–1

–1

1

1

AC

1

–1

1

–1

–1

1

–1

1

AD

1

–1

–1

1

1

–1

–1

1

BC

1

–1

–1

1

1

–1

–1

1

BD
1

–1
1

–1
–1

1
–1

1

CD
1
1

–1
–1
–1
–1

1
1

ABC
1

–1
–1

1
–1

1
1

–1

ABD
1

–1
1

–1
1

–1
1

–1

ACD
1
1

–1
–1

1
1

–1
–1

BCD
1
1
1
1

–1
–1
–1
–1

4
5
6
7
8
9

10
11

B C D E F G H I J NK L M

Two-way interac!ons Three-way interac!ons

Figure 19.35  Counfounding Effects in an Incomplete Design

P R O B L E M S

Level A
24. Suppose that a producer of single-room air conditioners 

wishes to test four prototype air conditioning units. 
The dependent variable is the number of days an air 
conditioner will function properly before its motor 
needs major repair. In this case the producer is interested 
in only one factor, the type of air conditioner, at four 
different levels. However, the manufacturer suspects that 
the type of use might affect the time until major repair. 
Specifically, these air conditioning units are used in three 
environments: (1) in residential homes located in northern 
climates, where they are used only on an occasional 
basis during the summer months; (2) in residential 
homes located in moderate climates, where they are used 
frequently during the summer months and seldom during 
other seasons of the year; and (3) in residential homes 
in southern climates, where they are used frequently 
throughout the year except during the cooler winter 
months. The producer suspects that these different 
environments may tend to obscure real differences among 
the four types of air conditioners.

  To conduct this experiment, the producer has 
allocated 20 air conditioners of each type. Provided 
that the air conditioner producer is interested primarily 
in how the type of unit affects the time until major 

repair, how can the company control for the type of 
environment? Assume that approximately 10% of all 
single-room air conditioners produced by this company 
are used in homes located in northern climates, 25% 
are used in homes located in moderate climates, and 
65% are used in homes located in southern climates. 
Explain, in detail, how the producer should set up this 
experiment.

25. Consider again the one-way ANOVA hypothesis 
test described in Problem 6. How could blocking be 
employed to control for a factor that is not of primary 
interest yet could introduce an unwanted source of 
 variation in this case?

26. Consider again the one-way ANOVA hypothesis 
test described in Problem 7. How could blocking be 
employed to control for a factor that is not of primary 
interest yet could introduce an unwanted source of 
variation in this case?

Level B
27. Following the example presented in Section 19-6c, 

illustrate a half-fractional design with five factors, each 
at two levels. Specifically, generate figures similar 
to Figures 19.34 and 19.35 to support your verbal 
explanation. Identify the aliases.
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19-7 CONCLUSION
This chapter has focused on the design of experiments and the statistical analysis of the 
resulting data, called analysis of variance. This methodology has long played an impor-
tant role in agriculture and many natural sciences, particularly the medical sciences. The 
business world is just beginning to realize the importance of designed experiments for 
designing and producing better products, and this trend will undoubtedly continue as more 
people receive training in the techniques of experimental design and analysis of variance. 
It is important to keep sight of the overall goal: to see whether variations in one or more 
factors have significant effects on a dependent variable of interest. The role of experimen-
tal design is to set up experiments in a way—using randomization, blocking, fractional 
factorial designs, or whatever—to get as much information from the resulting data as pos-
sible. Then the techniques of ANOVA indicate whether any main effects or interactions are 
significant. If there are significant effects, confidence intervals can be formed to measure 
the magnitudes of specific differences between means or other contrasts. The goal of good 
experimental design is to identify important factor effects when they exist.

Term Explanation Excel Pages
Equation 
Number

Analysis of variance 
(ANOVA)

A collection of methods for testing for 
differences in means across subpopulations 
(or across a single population treated in 
different ways)

19-2

Observational study A study that uses readily available 
information

19-3

Designed experiment A study in which data are obtained under 
controlled experimental conditions

19-3

Experimental design The plan that determines how many 
observations to obtain at which 
combinations of experimental conditions

19-4

Dependent variable The variable that is measured in an 
ANOVA study

19-4

Factors The categorical variables that serve as the 
explanatory variables in an ANOVA study

19-4

Treatment levels The possible values of a factor 19-4

Experimental units The people, machines, or whatever, that 
are measured in an ANOVA study

19-4

One-way ANOVA An ANOVA study with a single factor StatTools/Statistical Inference/
One-Way ANOVA

19-4

Two-way ANOVA An ANOVA study with two factors StatTools/Statistical Inference/
Two-Way ANOVA

19-4

Balanced design An experimental design where the same 
number of experimental units is assigned 
to each treatment level combination

19-5

ANOVA table A table that includes the ingredients (sums 
of squares, degrees of freedom, mean 
squares, F-ratio, and p-value) for tests of 
equal means

StatTools/Statistical Inference/
One-Way (or Two-Way) 
ANOVA

19-8 19.1, 
19.2, 
19.3

Summary of Key Terms

(continued)
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Term Explanation Excel Pages
Equation 
Number

Confidence intervals 
in ANOVA

Confidence intervals for differences 
between pairs of means (or contrasts)

StatTools/Statistical Inference/
One-Way ANOVA

19-8 19.4, 
19.5

Multiple comparison 
problem

The problem that when many statements 
are made, each with a stated level of 
confidence, the probability that at least 
one will be wrong is much larger than 
anticipated

19-20

Contrast A weighted combination of means  
where the weights sum to 0; used to 
contrast one combination of means  
with another

19-23

Bonferroni, Tukey, 
Scheffé methods

Methods that expand confidence 
interval lengths to correct for the 
multiple comparison problem

StatTools/Statistical Inference/
One-Way ANOVA

19-20

Full factorial design An experimental design in which 
observations are made at each 
combination of factor levels.

19-25

Incomplete (or 
fractional) design

An experimental design in which 
observations are made only at a  
selected subset of the combinations of 
factor levels

19-25

Main effects Indications of differences across levels 
of one factor (when averaged over the 
levels of the other factor)

Statistical Inference/Two-Way 
ANOVA

19-26

Interactions Situation where the effect of one factor on 
a dependent variable depends on the level 
of another factor

Statistical Inference/Two-Way 
ANOVA

19-26

Randomization The random assignment of experimental 
units to various levels of factors

19-36

Blocking A technique of assigning experimental 
units to similar blocks of  
experimental units to decrease error 
variation

Statistical Inference/Two-Way 
ANOVA

19-38

Confounding The (unavoidable) confusion of some 
effects with others in an incomplete 
experimental design

19-43

Summary of Key Terms (Continued )

P R O B L E M S

Conceptual Questions
C.1. ANOVA is always a test of the equality of means. So 

why is the method called analysis of variance?

C.2. In ANOVA terminology, there are “factors” and 
“treatment levels.” Give at least two examples of 
possible factors and treatment levels to illustrate that 
you understand what these terms mean.

C.3. Explain what the key ratio, the F ratio, in a one-way 
ANOVA table is all about and why it is the basis for a 
test of equal means.

C.4. Explain why there are several choices (in StatTools 
and other packages) for the type of confidence 
intervals in one-way ANOVA. Specifically, what 
problem do these variations attempt to solve?
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C.5. Explain exactly how regression can be used as 
an alternative to the “standard” one-way ANOVA 
 methodology. Which p-values from the two methods 
are guaranteed to be the same?

C.6. In academic papers that are based on data analysis, 
you often see a correlation matrix from the observed 
data with asterisks indicating the “significant” 
 correlations (those that are significantly different 
from 0). How does Section 19-4 on the multiple 
comparison problem relate to this situation? (By the 
way, academic researchers often offer no evidence 
that they are even aware of the multiple comparison 
problem. Maybe they are, but who knows?)

C.7. What is the difference between a full factorial design 
and an incomplete factorial design? If the former is 
“better,” why would you ever use the latter?

C.8. A study is performed on a sample of residential 
homes to discover whether the size of the monthly 
heating bill depends on the type of heat or the 
type of home. In particular, three types of heat are 
examined: electric, natural gas, and oil. Also, all 
homes are classified into two types: those on a single 
level and those with at least two stories. What might 
an interaction effect look like in this situation? 
Intuitively, do you think there is any reason to expect 
an interaction effect?

C.9. Chapters 8 and 9 discussed paired comparisons as one 
possibility when analyzing the difference between 
two means. What does this have to do with blocking, 
as discussed in Section 19-6b?

C.10. Part of the title of this chapter is “experimental 
design.” Why is the design of an experiment so 
important? What is the main disadvantage of an 
experiment that is not properly designed?

Level A
28. Although four similar-sized small-car models exhibit 

similar miles per gallon (mpg) sticker ratings, there is 
some skepticism as to whether their mean mpg values 
are really equal. To test this equal-means hypothesis, 
several cars of each model are driven for 10,000 miles 
under nearly identical driving conditions. The observed 
mpg values are listed in the file P19_28.xlsx. Use 
one-way ANOVA to help decide whether the different 
models have equal mean mpg values, and write a short 
report to summarize your findings.

29. A professional golf association wants to compare the 
mean distances traveled by four brands of golf balls 
when struck by the same driver. Specifically, a robotic 
golfer uses a driver to hit a random sample of 80 balls 
(i.e., 20 balls of each brand). Note that the 80 balls are 
hit in random order. The distance is recorded for each 
hit, and the results are listed in the file P19_29.xlsx.
a. Is there any indication of differences in the mean 

distances traveled by the four types of balls? 

Perform an appropriate statistical test and report a  
p-value.

b. Select an appropriate significance level and 
construct confidence intervals for all pairs of 
differences between means. Which of these 
differences, if any, are statistically significant at the 
selected significance level?

30. Boxes of a popular cereal brand are filled by five 
identical machines at a local production plant. 
Independent samples are randomly drawn from a large 
number of cereal boxes filled by each machine, and 
the number of ounces of cereal in each selected box is 
listed in the file P19_30.xlsx. Use one-way ANOVA 
to help decide whether the five machines are yielding 
essentially equivalent average fills (in ounces). Briefly 
summarize your findings.

31. Assume that we gather independent random samples 
from large batches of each of three different brands of 
lightbulbs. We then list the lifetime of each selected 
bulb in the file P19_31.xlsx.
a. Test whether the different brands of lightbulbs have 

equal average lifetimes at the 10% significance level.
b. Based on 90% confidence intervals for all pairs 

of differences between means, which of these 
differences, if any, are significantly nonzero at the 
10% significance level?

32. Consider again the one-way ANOVA hypothesis 
test described in Problem 28. Address the multiple 
comparison problem by applying the Bonferroni, Tukey, 
and Scheffé methods to obtain an overall confidence 
level of approximately 95%. How do these results 
compare to the uncorrected 95% confidence intervals?

33. Consider again the one-way ANOVA hypothesis 
test described in Problem 29. Address the multiple 
 comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall confi-
dence level of approximately 99%. Compare the widths 
of the confidence intervals generated with each of these 
 methods with those of uncorrected 99% confidence 
intervals. Explain your findings.

34. Consider again the one-way ANOVA hypothesis 
test described in Problem 30. Address the multiple 
comparison problem by applying the Bonferroni, Tukey, 
and Scheffé methods to obtain an overall confidence 
level of approximately 95%. Summarize your results.

35. Consider again the one-way ANOVA hypothesis 
test described in Problem 31. Address the multiple 
comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
confidence level of approximately 90%. Compare 
the widths of the confidence intervals generated with 
each of these methods with those of uncorrected 90% 
confidence intervals. Explain your findings.

36. A commuter airline wants to determine the 
combination of advertising medium (four levels) and 
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19-48  Chapter  Confidence Interval Estimation

 C A S E  19.1 KRENTZ APPRAISAL SERVICES

Nancy Krentz, the owner and manager of a 
property appraisal service based in York, 

Pennsylvania, is concerned that her four appraisers 
(Allen, Felan, Maloy, and Nelson) are producing 
appraisals of comparable properties that are 
generally not equivalent. She wants to conduct an 
investigation to determine whether her concerns 
are valid. Nancy directs her administrative assistant, 
Katie Shaffer, to identify 40 similar properties in the 

York area for use in the study. Given the sample 
of comparable properties, Nancy then arbitrarily 
divides the 40 properties into four subsets of ten. 
Next, she randomly assigns each subset to one of 
the four appraisers for assessment. The appraisals 
of the given 40 properties are listed in the file 
C19_01.xlsx. Given Nancy’s limited background 
in statistical analysis, she has asked for your expert 
assistance in evaluating the data that her assistant 

advertising agency (two levels) that would produce 
the largest increase in ticket sales per advertising 
dollar spent. Each of the two advertising agencies 
has prepared advertisements in formats required 
for distribution by each of the media (including 
television, radio, newspaper, and Web site). Forty 
small towns of roughly the same size have been 
selected for this experiment. Furthermore, groups 
of five of these small towns have been assigned to 
receive an advertisement prepared and distributed 
by each of the eight agency–medium combinations. 
The dollar increases in ticket sales per advertising 
dollar spent, based on a one-month period, are listed 
in the file P19_36.xlsx. Test for any significant main 
effects and interactions at the 5% level, and briefly 
summarize your results.

37. The file P19_37.xlsx lists the miles per gallon for each 
of three different octanes (Octane A, Octane B, and 
Octane C) of gasoline and three types of vehicles (light, 
medium, and heavy). Subsets of ten vehicles  
of each type have been randomly assigned to each 
octane level.
a. Do you find evidence of a significant main effect for 

the octane factor? Explain.
b. Do you find evidence of a significant main effect for 

the vehicle type factor? Explain.
c. Do you find evidence of significant interactions 

between the two factors? Explain.

38. In an effort to increase unit sales of particular products 
in the short run, many supermarkets reduce the price 
of these products and increase their display space. 
Consider three levels of each factor: for the price 
factor, (1) normal price, (2) moderately reduced price, 
and (3) heavily reduced price;  and for the display 
factor, (1) normal display space, (2) moderately 
increased display space, and (3) heavily increased 
display space. Suppose that each of these nine 
treatment combinations was applied five times to a 

specific product at a particular supermarket. Each 
treatment application lasted 7 days, and the dependent 
variable was unit sales for the week. The data for this 
experiment are listed in the file P19_38.xlsx. Test for 
any significant main effects and interactions at the 1% 
level, and briefly summarize your results.

39. Consider again the one-way ANOVA hypothesis test 
described in Problem 29. Suppose now that the pro-
fessional golf association wants to compare the mean 
 distances traveled by four brands of golf balls using 
human golfers instead of a robotic golfer. Each human 
golfer who participates in the experiment will employ 
the same type of driver to hit a subset of the 80 balls.
a. Explain how a randomized experimental design 

could be used to perform this one-way ANOVA.
b. Explain how a randomized block design could be 

used to perform this one-way ANOVA.

Level B
40. A production manager believes that the time required 

to assemble a particular product depends on the type of 
training that workers on the line receive. Four different 
training programs have been administered to workers 
of roughly equal experience at the local plant during 
the past year. To test her hypothesis, the production 
manager gathers assembly time data for randomly 
selected subsets of workers who have participated in 
one of the four training programs. These times are 
listed in the file P19_40.xlsx. Use one-way ANOVA 
to help decide whether the different training programs 
yield equivalent average assembly times, and write a 
short report to summarize your findings.

41. Consider again the one-way ANOVA hypothesis 
test described in Problem 40. Address the multiple 
comparison problem by applying the Bonferroni, 
Tukey, and Scheffé methods to obtain an overall 
confidence level of approximately 95%. Briefly 
summarize your results.

19-48  Chapter 19 Analysis of Variance and Experimental Design
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has compiled. She recalls that at one point in her 
business studies she learned a systematic method, 
called analysis of variance, for comparing the 
averages of related groups of quantitative data. 
However, she cannot recall the assumptions that 
must be met to apply this methodology, nor the 
procedures for implementing the appropriate 
method and correctly interpreting the results. 
Nancy has prepared the following list of  
questions that she would like for you to help her 
answer:

1. What requirements must be met to apply analy-
sis of variance? Is it appropriate to use analysis of 
variance in this case?

2. Assuming that it is appropriate to apply a form 
of analysis of variance here, how can she use the 
appropriate method to analyze the data?

3. Does the statistical analysis confirm her suspicion 
that there are individual differences among 
the four appraisers? If so, which of the four 
appraisers are typically generating evaluations 
that are larger or smaller than those of the 
others?

4. Has the statistical test been formulated in the 
best manner? In particular, was it appropriate 
for Nancy to divide the 40 selected properties 
into four subsets of ten and then assign each 
subset to one of the appraisers? If not, how could 
the design of the study be modified to discover 
the most useful information in evaluating the 
appraisal staff at Krentz? Be as specific as possible.

5. In light of the results of this data analysis, what 
steps, if any, should Nancy take to improve the 
situation in her organization?

Case 19.1 Krentz Appraisal Services 19-49
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