CS251 Winter 2015
Assignment 04
Due Friday March 20 1pm
45 Total Marks

Q1 (10 marks) Consider the assembly language instruction

4000:sw $2,100($1)
This 32-bit instruction in binary would look like the following:

Opcode | $rs $rt Offset

101011 | 00001 00010 0000000001100100

(@) (6 marks) Onthe next page, there is a figure of the multi-cycle datapath with six dark lines.

On each line, write in the value that travels along the corresponding wire(s) when executing this
assembly language instruction on the 4th clock cycle. You may assume during the first clock cycle we
execute state O of the finite state machine for this datapath. Note: you should write a decimal number
on each dark line, and not an expression involving things like 'PC'.

Assume that each register $i (with i > 0) contains the decimal value 1000 + i.

(b) (4 mark) In the table below write the value of each control line used to execute this instruction
during the 1st, 2nd, 3rd and 4th clock cycles. You should list the control value of a signal even if
it isn't listed in the bubble in the FSM diagram (assume non-listed values would be Don't

Cares or set to 0 as appropriate)

Control Signal Clock Cyclel Clock Cycle2 Clock Cycle3 Clock Cycle4

PCWriteCond

PCWrite

lorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSIrcA

ALUSrcB

RegWrite

RegDst

L]
L]
€ (2] uononasuy q
Iasifial
eep
AOWRAY | q—
1]
OTJNISU]
y / EJEp FEIEIE] wyep
\\\ LM uonanasuy| oy [
g C P Is1EGI [0-e1]
? PE oM onansu] —
=) 1T [v _._._JqA slalsibay . | B (LIS
1 Eyep & OISLE01 [91-02] fiowiapy I}

— 087 ¥ | ooy pEay IGTERNRVE| .
[dasidal [17<z] sSAIppY | 1
e o1jansu] W
0

e [92-T¢]

AR RE |
[0-1¢] ssasppe mﬂg 97 - Jlogg] vononasug
dump

(1$)00T ‘T8 M5
I

Q2: (10 marks) Consider the following MIPS assembly language instruction:
100: maddi $2 100($3) : maddi M[$rt] € M[$rs] + immediate

This instruction was discussed in class. The maddi (memory add immediate) instruction will compute a
32-bit value by adding the 16 bit immediate value to Memory[$rs]. The computed value will then be
stored in Memory[$rt]

Effect: M[$rt] < immediate + M[$rs]

a) (5 marks) Modify the Multi-cycle datapath on the next page to incorporate this new instruction
exactly as we did in class. You may also add new control lines as needed, and make structural
changes to the datapath again, as we did in class. (lecture slides : March 03)

All other instructions covered in class, should still work.

b) (5 marks) Make any necessary changes to the Finite State Machine that implements the Multi-
cycle control unit. You must indicate the value of all new and existing control lines necessary
to execute the maddi instruction on the datapath. Add in new states as appropriate. New states
must be labeled.

[TV

[0 TE] s=appe
dumngp

[0-¢] wonpanasuy
0NUoD 1asifial
niv elep
KIOWAY | q—
[o-¢1]
I01an.SU]
BJEp Iasifal
.— .
ALy . I:E: uonaNASy| ﬂﬂwm =
TP mardar [0-¢1]
peay A Plononagsu
sia)sifay |] & (U
Ims1dal I
¢ mm_w.m_um peay _%ﬁ.ﬂ.mﬁE Riowsayy x_ -
[amsidod [15-52] SOPRY (o I
peay ononasu] W
0
[9z-1¢]
OTaTLSU]

- Jlo-gg] vompnasuy

yiedeye apAdmyy Adydwo)

Memory address

computation

ALUSreA =1

Instruction fetch

MemBRead
ALUSrcA=0
D=0
IRWrite

ALUSecE = 01
ALUOp=00
PCWrite
PCSouree =

Al
)2
09 #

Branch @‘q
completion

ALUSrcA =1
ALUSrcB =00

ALUSreA =1

[nstruction decode
register fetch

ALUSech = 0
ALUSreB= 11
ALUOp =00

-
=
i
B
.
ot

ALUSrcB =10 - ALUOp=101
ALUSrcB =00
ALUOp =00 ALUOp=10 PCWriteCond
PCSource = 01
-
- g
I &
&| Memory Memary
=§ ACCEsS ACCRES R-type completion
i [
RegDst = 1
MemWrie Raglirie
lorD=1 MemtoReg =0

Write-back step

RegDst=0
RegWrite

MemtoReg=1

Q3: (7 marks) Consider the following MIPS assembly language instruction:
100: copy $2, $3, $4 : copy $rs, $rt, $rd

This instruction simply copies the value of $rs into $rt and $rd. This is an R-format instruction,
however the shamt and function bits are unused.

Effect: $rd < $rs
$rt & $rs

a) (2 marks) Modify the Multi-cycle datapath on the next page to incorporate this new instruction.
You may also add new control lines as needed, and make structural changes to the datapath as
needed. However to receive full marks, your solution should re-use as much of the datapath as
possible and complete in the fewest number of steps.

All other instructions covered in class, should still work.

b) (5 marks) Make any necessary changes to the Finite State Machine that implements the Multi-
cycle control unit. You must indicate the value of all new and existing control lines necessary

to execute the COPY instruction on the datapath. Add in new states as appropriate and the value
of the control lines in these states.

=]

—_

pr— 01TV

[0-1g] Esappe
dump

)

00u0?
nv

98

(0] uonannsug

BJEp

AL

CEEP g

PRy
sialsifay

eqep G S

T%M_U pedy

T amsidad

pedy

x| [r1-crl
n jonanasuy

W
0

I I

la)sifial
elep
faowajy

[0—c1]
oranLIS]

— —

135162l
uonannsu|

[0-¢1]
l._o_ﬁ._ﬂ_.._ﬁﬂ

(91071
EEoEﬁE

(1252
10712181

[92-18]

proyangsup

™| B (WIS

BJEp
LI

Mowsap

ERAIpPY

| Jlo-gg] nonpnagsug

(3 e
S il

H M

- = =

d

yedeje(q AN MY 99[dwo)

Memory address

computation

ALUSreA =1

Instruction fetch

MemBRead
ALUSrcA=0
D=0
IRWrite

ALUSecE = 01
ALUOp=00
PCWrite
PCSouree =

Al
)2
09 #

Branch @‘q
completion

ALUSrcA =1
ALUSrcB =00

ALUSreA =1

[nstruction decode
register fetch

ALUSech = 0
ALUSreB= 11
ALUOp =00

-
=
i
B
.
ot

ALUSrcB =10 - ALUOp=101
ALUSrcB =00
ALUOp =00 ALUOp=10 PCWriteCond
PCSource = 01
-
- g
I &
&| Memory Memary
=§ ACCEsS ACCRES R-type completion
i [
RegDst = 1
MemWrie Raglirie
lorD=1 MemtoReg =0

Write-back step

RegDst=0
RegWrite

MemtoReg=1

Q4. (3 marks) In the diagram below, mark all data dependencies by drawing straight lines (similar to
the black lines on figure 6.6 of the course notes). Assume that the code is to run on the pipelined
datapath that does not implement forwarding).

For each data dependency, label it either as a hazard or as a non-hazard, and assume no delay from
other units.

Time (in clock cycles) -
cC1 CC2 CC3 CC4 CC5 CCB CC7T CC8 CC9

Program
execution
order

(in instructions) = - M

Iw $10, 20($1) A ik

sub $10, $2, $10 @_ _E:E — —E‘{Ei
e 510,200 -]
it 510,115 Ay |

. 1w $8, 100 ($10) @— -dlﬁel IWI' Feg

b)(4 marks) Re-write the code segment from part(a) inserting nops where necessary on a datapath that
does not implement forwarding.

c)(1 mark) Re-write the code segment from part(a) inserting nops where necessary on a datapath that
does implement forwarding. (assume the forwarding datapath in Q5 below)

Q5. (5 marks) This question refers to the pipelined datapath with forwarding as given below.
Consider the instructions:

100 sub $1, $3, $5

104 add $2, $1, $1

108 sub $3, $1, $2

Consider the situation when the 100 sub instruction is in the WB stage, the 104 add instruction is in the MEM
stage, and the 108 sub instruction is in the EX stage. In the figure below,

trace back each of the two inputs to the ALU through the MUXes back to the appropriate

set of pipeline registers. State the values of the select lines, ForwardA and ForwardB.

sub $3,51,52 add $2,51,51 sub $1,53,%5

ID/EX
|We EX/MEM
:[It‘.n"t.l: M . Ill.vlia—LhiEM'WB
IF/ID L.|E i WB—
M
i u
- X
g —
B Registers 1 Y
E ¢ ALU— - —- M
5 4 u [
Instruction E = X
memaory Data
mermory

|IF/ID.RegisterRs

IF/ID.RegisterRt Rl -
IF/ID.Registernl AL ForwardA EX/MEM.RegisterRd

IFID.RegisterRd | Ra] |||, M '
TE arwardin .\-
o

MENM/WB.RegisterRd

[3
]
=
T
[LR]
5.—-—)-(::3
B
T
—
K

Q6: (5 marks)
Given the following code segments below, re-write the code (code rearrangement to avoid as many
stalls as possible). Assume the datapath implements data forwarding and branches are completed in the

ID stage, however flushing does not occur in this datapath. You may insert a nop instruction, only if
code rearrangement cannot be used.

add $5, $6, $3

w $2, 100($3)

sw $3, 200($2)

add $5, $4, $3

subi $2, $2 ,-4

subi $4, $5, 100

w $3, 100($2)

sw $3, 100(34)

beq $3, $2, 28

w $5, 200($6)

add $3, $2, $1

